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Abstract
NEW DISTANCE ALGORITHMS FOR OPTIMISATION

AND CONTACT MECHANICS PROBLEMS

Exeter College, University of Oxford
Michaelmas Term, 2017

This thesis presents a new solution to a difficult problem: computing the min-

imum distance between bodies in virtual environments. This problem encompasses

fields like computer graphics, robotics and engineering but, because each subject has

specific requirements, the algorithms are hardly transferable from a field to another.

For instance, in computer animations the major concern is speed, whereas applications

in the field of computational mechanics require the highest possible level of accuracy.

Furthermore, engineering simulations involve a large number of geometrical primitives

often of different types, such as quadrics, polytopes and splines, that displace, deform

and change topology. For these reasons, distance queries on arbitrary bodies are a

major computational bottleneck to large engineering simulations.

A versatile framework that improves the state-of-the-art distance algorithms for

applications in computational mechanics is presented. The improvements are demon-

strated throughout this thesis; firstly, by facilitating the coupling of different numerical

methods, such as discrete and finite elements. Secondly, by exploiting spatial coherence

and the data caching capability of modern hardware architectures to accelerate the so-

lution of distance queries. Lastly, by addressing the numerical instabilities caused by

floating-point arithmetic.

The contribution of this research is a set of three algorithms that can either work

independently or combined into a hierarchical framework. These are: (i) the Signed

Volumes method: a new recursive procedure for point–simplex distance queries; (ii) an

improved version of the Gilbert-Johnson-Keerthi (GJK) algorithm for faster and more

accurate distance queries between convex bodies; and, (iii) an innovative hierarchy of

bounding volumes for arbitrary representations of concave objects.

To demonstrate the applicability of the new algorithms, they have been imple-

mented into an in-house solver for the analysis of impacts as well as into a third-party

software package. Benchmark tests, analytical calibration, comparison with commercial

software and verification with published works demonstrate the improvements brought

by the novel algorithms. Finally, two applications are presented: a contact mechanics

problem for the packing of sand grains with realistic morphology, and a morphology

optimisation problem for the generation of representative volume elements (RVEs) of

polycrystalline materials. The results show that both applications benefit hugely in

terms of computing time and accuracy from the novel algorithms.
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Chapter 1

Introduction

1.1 Distance queries in computational mechanics

1.1.1 General

Engineers need to measure distances. Distance queries quantify how far apart objects

are, and based on this information engineers take decisions all the time.

The most common metric used to measure distances in mechanics is the Euclidean

distance. Its simplest interpretation is the length of a straight line segment connecting

two points. Given p and q , two points in the three-dimensional (3D) space R3 , the

Euclidean distance is defined as follows:

d(p, q) =

√√√√ 3∑
i=1

(pi − qi)2. (1.1)

Effectively the norm of a vector qp , d(p, q) finds countless applications in engineering.

Of particular interest are those problems which require the measure of the mini-

mum distance between two objects. This class of problems is of utmost importance to

mechanical engineers and is therefore the focal point of this thesis.

1



Chapter 1. INTRODUCTION

(a) (b)

(c) (d)

Figure 1.1: Formulation of a contact problem (a) and numerical simulation of composite
tube sliding on flat surface (b) from (247). Formulation of an optimisation problem (c)
and application to structural engineering problem (d) from (16).

Two examples of engineering applications are depicted in Figure 1.1; these rely, in

different ways, on the distance expressed by Eq. (1.1). The first one formulates, see

Figure 1.1(a), a contact mechanics problem and shows an application in which two ob-

jects collide and deform as the minimum distance between them is null (Figure 1.1(b)).

The second one concerns an optimisation problem, see Figure 1.1(c), in which the use

of distance queries is more subtle. In fact, an optimisation process may target the

stress distribution, as in Figure 1.1(d), or the distance between material regions.

As more and more engineers solve these problems using computational techniques,

nowadays computers need to measure distances. Hence the rise of distance algorithms.

2



Chapter 1. INTRODUCTION

1.1.2 Distance algorithms

A distance algorithm is that part of a computer program that solves distance queries.

In computational mechanics, since the late 1970s, these algorithms are widely used in

contact mechanics, optimisation, mesh generation and real-time simulations.

Despite the broad spectrum of applications, distance algorithms tend to be highly

specialised and to solve a single specific problem. Their applicability is therefore very

limited and this is because each application has particular requirements. For example,

the contact analysis in Figure 1.1(b) involves many small squared elements that remain

in contact for a prolonged period, whereas the voids in the optimisation problem of

Figure 1.1(d) have arbitrary shapes and they are always at a distance from each other.

These differences yield to specific requirements.

The desirable characteristics of distance algorithms are: speed, scalability and ac-

curacy (64). Distance queries should be solved as quickly as possible to limit the overall

computing time. They should also be scalable to address, within a specific application,

various scenarios, such as: rigid or deformable bodies, and from few units to millions of

bodies. Finally, for mechanical problems whose solutions depend directly on distance

queries, accuracy is the most important requirement.

The design and the implementation of distance algorithms is often very involved.

The design requires notions of computer science, mathematics and a good understand-

ing of the underlying mechanical problem. In fact, high performance can only be

achieved by exploiting the architecture of modern processor units and by tailoring the

algorithm to the specific requirements of the particular application.

3
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1.1.3 Motivations for further research

Despite the nearly forty years of development, distance algorithms are still a major

computational bottleneck for the solution of many mechanical problems.

The community of mechanical engineers has overlooked the correlation between

speed, accuracy and robustness of distance algorithms and the impact that these have

on the solution of mechanical problems. For instance, inadequate accuracy can ruin

the whole simulation, or a drastic reduction of computing time may be achieved by

minimising the number of operations taken by distance algorithms. To date, very little

is known about what is the most effective way to reduce the computational cost of

distance algorithms; for this reason, furthers studies are needed.

In recent years, a significant effort has been made to couple numerical methods

such as finite elements, finite volumes, mesh-free, distinct elements etc..., but distance

algorithms are a persisting barrier. Each method comes with a particular mathemat-

ical formulation that requires distance algorithms to be flexible but, since these are

specialised for specific problems, their limited applicability makes the coupling trou-

blesome.

Overall, faster and more versatile distance algorithms will enable engineers to solve

problems that today are either too expensive or too complex.

1.2 Aim and objectives

The present work aims to advance the state-of-the-art in distance algorithms for com-

putational mechanics, particularly in terms of speed and versatility.

The objectives of this thesis are:

4



Chapter 1. INTRODUCTION

• To review existing methodologies in the field of computational mechanics.

• To identify limitations and pitfalls of existing methodologies.

• To test, by means of established and/or new benchmarks, the performance of

existing methodologies.

• To design new algorithms that are faster and more versatile.

• To verify logic, performance and implementation of new algorithms.

• To implement standalone libraries which facilitate the adoption of the new algo-

rithms into existing software packages.

• To validate the claims on capability and versatility by means of applications in

contact mechanics and topology optimisation.

• To disseminate the main findings and, whenever possible, the source code of the

new algorithms.

1.3 Research strategy

In the preface to their book (172), Nocedal and Wright wrote that “Knowledge of

the capabilities and limitations of these (optimisation) algorithms leads to a better

understanding of their impact on various applications, and points the way to future

research on improving and extending optimization algorithms and software”. Distance

algorithms indeed are optimisation procedures, and the preceding quote perfectly sum-

marises the research strategy of the present work.

In particular, this thesis focuses on algorithms aimed at tackling distance queries at

three levels: body (non-convex), sub-body (semi-convex) and primitives (elementary

shapes). These three are studied and validated independently, but they are eventually

5



Chapter 1. INTRODUCTION

combined together into a hierarchical framework for the solution of complex problems.

1.4 Novelties

This thesis presents new insights on distance algorithms and their design for solv-

ing problems in computational mechanics. The algorithms are based on new studies,

never published before, that relate accuracy and robustness. These provide a better

understanding from which three novel methods are designed:

1. A robust and accurate method for the solution of point–simplex (elementary

shapes) distance queries.

2. A routine that reduces the computing time for evaluating Eq. (1.1) when both p

and q belong to arbitrary convex bodies.

3. An innovative intrinsic approach to broad contact search for non-convex, semi-

convex and deformable bodies.

1.5 Thesis layout

The thesis is structured as follows:

Chapter 2 presents the literature review. This encompasses the fields of robotics,

computer graphics, computer vision, computational mechanics and computational ge-

ometry. Furthermore, it provides basic notions on distance algorithms to understand

the principal features and pitfalls of existing methods.

Chapter 3 presents three new algorithms for the solution of distance queries. For

each one of these is provided: an introductory section, a detailed description of the

6



Chapter 1. INTRODUCTION

formulation and the implementation of the method.

Chapter 4 presents benchmark tests, analytical calibration, comparison with com-

mercial software and verification with published works to validate the novel algorithms.

Chapter 5 presents an application in which the new algorithms are used to solve a

contact mechanics problem. In particular, the mechanical packing of sand grains under

gravitational load is considered.

Chapter 6 presents the solution of a topology optimisation problem that aims to

generate representative volume elements (RVEs) for multi-scale simulations.

Chapter 7 provides concluding remarks and recommendations for future works.

7



Chapter 2

Literature Review

This chapter reviews the most relevant distance algorithms published in the literature.

The survey begins by presenting the broad spectrum of applications in which such

algorithms play a crucial role. This review is concludes that each application has

specific requirements: applications in the field of computational mechanics appear

to require a higher level of accuracy than the algorithms employed, for example, in

computer animations. These requirements are often difficult to fulfil and give rise to the

algorithm design issues reviewed in the second part of this chapter. The most efficient

methods published in the literature are hierarchical frameworks : a chain of algorithms

that tackle distance queries from a coarse to a fine level. One can usually distinguish

three major levels. The first one approximates arbitrary bodies with bounding volumes,

and sorts them in spatial data structure as these deform and displace. The second

is restricted to simpler and strictly convex shapes. The third considers only basic

primitives, the simplest geometrical entities describing a solid body, such as spheres and

triangles. This chapter discusses each level, drawing particular attention on robustness

and performance of existing distance algorithms.

8
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2.1 Applications of distance algorithms

Algorithms for the solution of distance queries are ubiquitous in virtual environments,

encompassing applications in computer games, computer animations, computer aided

design (CAD), computer vision and computer simulations.

Most, if not all, numerical methods in computational mechanics rely on distance

algorithms. These numerical methods include, but are not limited to: the finite el-

ement method (FEM) (14, 261), the distinct element method (DEM) (51, 98, 127),

extended FEM (X-FEM) (216), proper generalised decomposition (PGD) (44, 118),

boundary element method (BEM) (17), isogeometric analysis (IGA) (101), mesh-free

methods (59, 128), granular element method (GEM) (129), numerical manifold method

(NMM) (210) and combined finite-discrete element method (158). These approaches

need distance algorithms to solve, for example, collision queries in contact mechanics

to model friction (121, 207), fractures (18, 134, 182), impacts (19) and fluid–structure

interaction problems (69). Contact detection however is not the only application of

distance algorithms in computational mechanics. Mesh generation (25, 188), tracking

of discontinuities (17) and neighbour search (125) are some of the interdisciplinary

applications in common other disciplines.

Robotics has a long history in the development of distance algorithms and it has

influenced all other disciplines. The ancestors of modern procedures are simple contact

detection algorithms for convex bodies (35, 47, 142, 150, 223). General frameworks for

contact detection in 3D arose starting from the late ’70s (31); a decade thereafter mod-

ern distance procedures (39, 80, 89, 132, 204) and four-dimensional collision detection

schemes (36) became available. Lately, the success of CAD software brought a sudden

9
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prosperity to distance algorithms. In particular, CAD introduced the need for comput-

ing the accurate distance between a point and an arbitrary surface (94, 191). Today

CAD packages are mature products, and the research activities on distance algorithms

are now driven by the entertainment industry.

The computer graphics community is the most active in the development of new

distance algorithms. These are used in rending computer animations and for oper-

ating computer games. For example, ray tracing is a common rendering technique

that produces photorealistic images, and it necessitates high-performance distance al-

gorithms and dedicated hardware to deliver smooth visual experiences at 60 renderings

per second (149, 171).

In order to fulfil the high frame rate requirement in real-time and to give the user a

realistic perception of the scene, the computer graphics community has specialised not

only the software, but also the hardware. Nowadays, distance queries are commonly

accelerated by graphic processing units (GPUs) (64, 116, 184, 211, 250). These have

added more computing power, and hence enabled more realistic renderings. Similarly,

physical-based game engines have been developed to improve the user experience (24,

85). Despite the use of GPUs, the computing power remains limited and computer

games cannot afford to deliver less than 60 images per seconds. Alike for other real-time

and computer graphics applications, game developers had to introduce approximations

in the physics of the scenes to meet this requirement (153, 228).

Apart from rare exceptions, the highly specialised distance algorithms developed

for computer graphics are either not suitable or not applicable to computational me-

chanics, and there are many reasons for that. First and foremost accuracy, which is

often not adequate to solve engineering problems. Another barrier is the use of GPUs

10
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since the engineering and medical communities still rely heavily on CPUs. Moreover,

computer games involve much larger scenes (called world) and the simulated time is

not comparable to the one simulated in computational mechanics. Therefore, the par-

ticular scenarios arising in computational mechanics translate in specific requirements

for the design of distance algorithms.

The requirements specific to distance algorithms for computational mechanics ap-

plications are outlined in the following section.

2.2 Algorithm design issues

The desirable characteristics of a distance algorithm for engineering applications are

versatility, robustness and low computational cost. In practise, however, computing the

Euclidean distance between two sets of points is non-trivial. Each set is usually non-

finite and defines a body whose representation varies for different applications; finding

the closest points between two bodies is the first difficulty. Furthermore, if the domain

comprises m bodies, there are O(m2) possible contact configurations; testing each one

of these is not a viable solution. Another difficulty is that the algorithms run on finite-

precision machines prune to rounding and cancellation errors. This section examines

the implications that such difficulties have on the design of distance algorithms.

2.2.1 Representation of solids

A peculiar characteristic of computational mechanics is that solid bodies may be rep-

resented in many different ways. In other fields there are essentially no options: in

computer graphics polygons (usually triangles) are used, whilst in CAD and robotics,

11
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non-uniform rational B-splines (NURBS) are the most common ones. The representa-

tions employed in engineering problems are quadrics (e.g. spheres, ellipses and cylin-

ders), polytopes (e.g. polygonal meshes, tetrahedrons and hexahedrons), splines (e.g.

B-splines, T-splines and NURBS) and, more rarely, compounds of these. The large va-

riety of geometrical representations makes the design of a versatile distance algorithm

particularly difficult.

Let us illustrate with an example the consequences that different representations

have on the distance algorithms. Firstly, recall that a subset Ω ∈ Rn is convex

if, for any two points p, q ∈ Ω, it exists a point s in the same body defined as:

s = ( 1 − λ ) p + λ q , with 0 ≤ λ ≤ 1. Then consider a pair of disjoint convex

bodies ΩP and ΩQ in Rn ; for simplicity ΩQ = {O} and only the representation of ΩP

is arbitrary. The distance between the two bodies is a general form of Eq. (1.1):

d(ΩP ,ΩQ) = min{‖p− q‖ : p ∈ ΩP , q ∈ ΩQ} (2.1)

where the Euclidean norm ‖ · ‖ of the vector p − q is given by ‖qp‖ =
√

qp · qp .

Since ΩQ is a singleton, Eq. (2.1) is equal to d(ΩP , 0), which is the norm of a unique

vector zP −O = w with norm non-null. The unknown zP is the furthest point of ΩP

from the hyperplane defined by w along the direction w and is obtained by evaluating

the so-called support function. The support function hΩP
: Rn → R is defined for all

points of a convex body ΩP as:

hΩP
(w) = max{(p−O) ·w : p ∈ ΩP}. (2.2)

The solution of hΩP
is a point, not necessarily unique, sΩP

(w) ∈ ΩP called support

mapping. From this is defined a vector sΩP
(w) = sΩP

(w)−O that verifies:

hΩP
(w) = sΩP

(w) ·w (2.3)
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w sΩP
(w)

ΩP

(a)

w sΩP
(w)

ΩP

(b)

sΩP
(w)w

ΩP

(c)

Figure 2.1: Illustration of support mapping s(w) for polygon (a), ellipse (b) and
compound (c) along a given direction w .

By substituting Eq. (2.2) into Eq. (2.3) one obtains that:

max{(O − p) ·w : p ∈ ΩP} = sΩP
(w). (2.4)

This implies that sΩP
(w) is a solution of the distance query whose computation, how-

ever, it depends on the nature of the representation of ΩP . See Figure 2.1 for an

illustration of Eq. (2.3) on different representations (e.g. polytope, ellipse, compound

of spheres).

This example demonstrated that the difficulty in designing a versatile algorithm

lies in the evaluation of sΩ(w) for an arbitrary discretisation of Ω. In what follows

are reviewed the formulae to compute sΩ(w) for common representations of convex

bodies. It is worth recalling that in practical applications non-convex bodies are always

decomposed into convex sub-bodies.

Quadrics The support mapping of a sphere in R3 , or a disk in R2 , with radius

ρ ∈ R+ and centred in c , may be computed with the following formula:

ssphere(w) = c + ρ
w

‖w‖
. (2.5)

13



Chapter 2. LITERATURE REVIEW

Quadrics have been successfully employed in DEM simulations of granular media (146),

manufacturing processes (163, 213), bed reactors (13), shallow flows (32), fracture (5)

and erosion (81). See (88) for treatment of cylinders, ellipsoids and cones.

Polytopes The support mapping of a non-empty and finite set of m points

P = {p1, ..., pi, ..., pm} , which defines the vertices of a polytope in R3 , verifies:

w · spolytope(w) = max{w · (O − pi) : pi ∈ P}. (2.6)

Polytopes are, of course, extremely common in FEM, but also in DEM simulations (232).

See (225) for treatment of axis-aligned boxes, which are an important instance of poly-

tope.

Piecewise polynomials Given a parametric curve C(u) that admits first deriva-

tive C ′(u) in û , the support mapping writes:

sspline = C(û) ·w such that C ′(û) ·w = 0. (2.7)

This formulation is used, for example, in high-order finite elements but also in NURBS

and T-splines; these underpin emerging methods such as isogeometric analysis (101),

GEM (4) and NAFEM (208). See (221) for treatment of NURBS surfaces.

Compounds A large variety of complex objects may be efficiently constructed by

combining two or more convex objects with arbitrary representation. By means of the

Minkowski difference, a compound object K may be defined as:

K = P −Q = {k : k +Q ⊆ P} (2.8)

and it can be shown that K is convex (240). For example, Eq. (2.8) allows to describe

capsules by taking the Minkowski difference between a sphere and a line segment. The
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support mapping of any compound body is readily provided by:

sK(w) = sP −Q(w) = sP (w)− sQ(w). (2.9)

If K is a capsule, from Eq. (2.5) and Eq. (2.6), the computation of sK(w) involves

only three dot products and is therefore very efficient.

The problem is that the literature does not present a distance algorithm sufficiently

versatile to handle quadrics, polytopes, splines and compound bodies all at once. Prob-

ably the only procedure that attempts to achieve this was published by Benson et al.

(20). This method however approximates complex bodies with polygons, thus intro-

ducing geometrical approximations when representing splines.

To date, the design of an accurate and truly versatile distance algorithm for appli-

cations in computational mechanics is still an open challenge.

2.2.2 Robustness

An algorithm lacking of robustness returns inconsistent results and is therefore not

suitable for engineering applications. Because the solution of distance queries involve

many arithmetic operations, designing a robust distance algorithm is not a simple task.

There are two factors which can compromise the robustness of a distance algorithm.

The first one is the solution of an ill-posed distance query, that is: attempting to solve a

problem which does not admit unique solution. The second one is the error that occurs

when performing arithmetic operations on real numbers represented by floating-point

numbers. These two aspects are separately detailed below.

Well-posed problem Notice that for polytopes (polygons) with parallel facets

(edges) a distance query has infinitive solutions. Let us consider two convex bodies
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in R2 represented by two non-empty and finite sets P and Q . One can find, from

Eq. (2.1) and Eq. (2.6), that it exists a pair of points zP ∈ P and zQ ∈ Q such that:

d(P,Q) = ‖zP − zQ‖ (2.10)

These points are called witness points and define the separating vector zQzP . If the

bodies are polygons with parallel edges, there are at least two pairs of witness points

which verify Eq. (2.10). This suggests that the affine space in which the bodies reside

is not best suited for computing d(P,Q); indeed, a robust algorithm should recast

the original distance query of Eq. (2.1) in an equivalent problem which admits unique

solution.

Numerical error The support functions reviewed in Section 2.2.1 are well-defined,

but their evaluation with floating-point arithmetic is subject to the machine accuracy.

In practise this can introduce robustness issues even for well-posed problems. Alto-

gether, a robust distance algorithm must take the limitation of floating-point arithmetic

into account, and counterbalance the numerical error and deliver consistent solutions.

2.2.3 Performance

The applicability of a distance algorithm is determined by its performance in terms of

CPU time and accuracy. These are closely related to the robustness; in fact, robust and

accurate algorithms compute consistent results within a specific tolerance. However, it

is important that distance queries are solved as quickly as possible to limit the overall

computing time.
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CPU time Finding the solution to distance queries is often the major bottleneck

in computational mechanics (161, 247, 262). This thesis investigates, in Chapter 5 and

Chapter 6, two applications in which distance queries are critical: dynamic contact

mechanics simulations and morphology optimisation. For these and other applications

reviewed in Section 2.1, distance algorithms can account for the majority of CPU

time (70, 87, 165).

Accuracy In real-time applications, the computing performance is the main con-

cern but, as already mentioned, this is achieved by introducing coarse approximations.

Computer games and collision avoidance systems have only about 50µs to 250µs to

resolve all distance queries in a simulation step (64). Currently, this is achieved by

reducing the accuracy of distance queries and/or of the representation of solid bodies.

Coarse approximations are sometimes desirable in computational mechanics, typically

for contact detection, as these allow to reduce the possible contact configurations of m

bodies from O(m2) to O(m logm). However, they are not sufficient to resolve real-life

problems; for engineering purposes, a distance algorithm must guarantee a minimum

level of accuracy — which usually corresponds to the machine precision.

2.3 Distance methods for arbitrary bodies

Whilst the formulae in Eqs. (2.5)-(2.9) cover the broad range of mathematical descrip-

tions employed in computational mechanics, in practise they are applicable to convex

bodies only. The treatment of arbitrary shapes requires special methods specifically

designed to handle dynamic simulations and optimisation problems, for example: large

deformations, large displacements, fragmentation and morphology changes. This sec-
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tion reviews suitable methods published in the literature and summarises their features.

2.3.1 Hierarchical frameworks

It is computationally more efficient to measure the distance between many simple

bodies rather than few complex ones. For this reason the shape of solid bodies assume

special significance in view of frequent calls to distance algorithms.

The methods designed for handling complex topologies are called hierarchical frame-

works. These involve various distance algorithms that interpret bodies as a hierarchy

of basic primitives or simplified geometries. At the low-level, coarse approximations

are introduced, whilst high-levels provide more detailed descriptions. In applications

such as ray casting and contact detection, the former is called broad, coarse or global

search, the latter narrow, fine or local search. Of course, the higher the level of de-

tails, the higher the processing and memory requirements. For this reason, the broad

search skims, quickly and cheaply, over the whole computational domain, and passes

some information to the subsequent finer search which is more accurate but also more

expensive.

All modern hierarchical distance algorithms comprise two key elements. From the

pioneering work of Zhi-Hua and Nilsson (259) for 2D applications, until the most recent

contact search for Nagata patches (167), the fundamental components of all hierarchical

procedures are bounding volumes and space-partitioning schemes. These are separately

detailed below.

Bounding volumes It is a common practise to enclose complex bodies into

volumes that admit simple evaluation to their support mapping; this allows to solve
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Figure 2.2: Illustration of common bounding volumes for an arbitrary body Ω:
sphere (a), axis-aligned bounding box (b) and convex hull (c). All these are extrinsically
described by vectors with respect to a frame of reference depicted in the figure.

approximatively, but very quickly, distance queries between complex bodies. The ideal

characteristics of a bounding volume are: tight to the enclosed shape, cheap to store

in memory and simple to compute. The most common volume types encountered in

computational mechanics are illustrated in Figure 2.2 and described below.

• Spheres : These are the cheapest to store in memory and are built using ran-

domised algorithms to obtain the smallest sphere (73, 84, 170, 242), however

bounding spheres are usually not very tight to the enclosed object. Another lim-

itation is that the support mapping in Eq. (2.5) relies on the centre c , which

is an extrinsic quantity that has no relationship with the shape enclosed in the

sphere. Consequently, whenever the enclosed body deforms and/or displaces, the

bounding sphere needs to be recomputed to updated the vector describing the

position of c .

• Axis-aligned bounding boxes (AABBs): These are the most common type of

bounding volume. Unlike spheres, testing for collision two AABBs requires inte-

gers operations which is usually preferred on modern SIMD (single instruction,

multiple data) architectures. The generation of AABBs is straightforward and

runs in linear time. However, when testing two AABBs, the evaluation of the
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support mapping involves two vectors that have no relationship with the enclosed

body (225). This shortcoming is common to both bounding spheres and AABBs.

• Convex hulls : These are, by definition, the tightest type of bounding volume.

The convex hull conv(Ω) of an arbitrary body Ω ∈ Rn is the smallest convex

set enclosing Ω and is given by the intersection of all convex sets containing Ω.

Therefore, if Γ is the frontier of Ω, Γ ⊆ conv(Ω) and, unlike for bounding

spheres and AABBs, there is a strong relationship between the enclosed body Ω

and the points defining the bounding volume conv(Ω). The advantage is that the

bounding volumes is automatically updated whenever the enclosed body moves

or changes morphology. However, the generation of convex hulls for polytopes is

far more complex and expensive than for AABBs (53).

Space-partitioning Finding the closest neighbour to a query point from a pool

of m neighbours is a common problem in computational mechanics. A näıve solution

would be to compare the outcome of O(m2) distance queries; however, for many appli-

cations this approach is too expensive. Space-partitioning schemes are a viable solution

designed to reduce this cost: their aim is to limit the number of distance queries by

subdividing the domain and organising it into data structures.

The literature presents a huge variety of space-partitioning methods. One way in which

these could be classified is body-based and space-based, respectively known as trees

and grids. On the one hand, the alternating digital tree (ADT) was one of the first and

most successful body-based algorithm. ADTs have been extensively used for closet-

neighbour searches in applications such mesh generation and FEM simulations (25).

On the other hand, the no binary search (NBS) method (159) was designed to provide
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DEM/FEM simulations a more efficient solution for dynamic simulations. Modern

space-partitioning algorithms are essentially improvements, variations or combinations

of either the ADT of the NBS method. The latter was specialised for mesh free methods

(12) and improved to deal with polydisperse assemblies (162, 189, 190, 244). Appli-

cations of the NBS have been mostly restricted to spherical particles, and the com-

putational complexity may be bounded to O(m) by using multi-level grids (125). A

different approach, involving AABBs, for dense assemblies of polydisperse particles was

presented in (234). If one wishes to deal with more complex geometries, compounds

of spheres provide a cost-effective solution. An example was recently presented in (67)

which, however, shows results for monodisperse spheres only. FEM simulations are

commonly handled with methods inspired to the ADT, such as the augmented spatial

digital tree (ASDT) (71), or to the ray tracing methods called b-tree (34).

Figure 2.3 presents a graphical comparison of grids, trees and the binary space par-

tition (BSP) methods. BSPs are widely used for computer graphics applications, see

(64) and references therein. NBS, ADT, ASDT and other space-based methods were

compared in (93), however that study considered only static scenarios. In dynamic

simulations, when position or morphology change, these data structures are likely to

become unbalanced and their performance suboptimal (22, 23, 28). An updating step,

and therefore extra computing effort, is needed to retain the high performance of the

broad search.

The biggest problem when using bounding volumes, space-partitioning or a combi-

nation of the two, is to decide when to update their data-structure. This decision must

be made at runtime for all simulations in which bodies change morphology and/or

position. For space-based method, a common solution is to update the partitioning at
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(a) (b) (c) (d)

Figure 2.3: Examples of spatial data structures: grid cells (a), adaptive grid (b),
quadtree (c) and binary space partition (d).

discrete intervals (15, 21), whereas for bounding volumes this is commonly addressed

by creating a buffer zone around each body (42, 71, 159, 163). Both solutions are

simple to implement and aim to reduce the number of updates to the hierarchical

representation of the computational domain; however, they dramatically increase the

amount of information passed to subsequent (finer) search levels. For example, in a

closest neighbour search problem, these information could be a list of potentially close

bodies.

The buffer zone and the cell size are two parameters that impact the performance.

The former when rebalancing the tree, the latter when recomputing the boxes. On

the one hand, it is important to keep both parameters as large as possible to reduce

the number of data-structure updates. On the other hand, however, reducing the size

of buffer zone and the cell size can reduce the amount of information passed to the

subsequent (and more expensive) search levels. Therefore, defining these values is a

difficult choice that users have to make, and unsuitable values may increase significantly

the computing cost.
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2.3.2 Spatial coherence

A further improvement to the solution of distance queries comes from the observa-

tion that, in iterative and time-marching simulations, there is a high level of spatial

coherence, that is: subsequent solution steps differ only marginally from each other.

Distance algorithms exploiting spatial coherence require extra design and coding

effort, but these are usually rewarded in computing time reduction (60, 186, 225, 250).

The idea is to cache useful information and to reuse it as “good guess” for the next

solution step. For example, the closest neighbour to a query point is inevitably a

good guess for a new neighbour-search conducted for the same query point at the next

solution step.

Finally, spatial coherence can accelerate any level of the hierarchical framework.

This paradigm is used extensively in real-time simulations, robotics and computer

graphics application to accelerate both the evaluation of support mappings and finer

tests between primitives (105, 122, 135, 165).

2.3.3 Gaps in the literature

A number of gaps emerged from the review of the literature on distance algorithms

for arbitrary bodies. Firstly, there is a lack of versatile algorithms: for each numerical

method, e.g. FEM or DEM, the literature presents many ad-hoc distance algorithms.

These methods are designed and benchmarked only for specific applications, whereas

Section 2.1 has shown that the solution of distance queries is crucial for a large variety

of problems in computational mechanics. The development of a general framework

which deals with all representations of solid bodies (Section 2.2) would allow to couple,

very easily, any numerical method.
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Secondly, despite the nearly 40 years of development, modern formulations of

bounding volumes and space-partitioning schemes are fundamentally unable to adapt

as bodies displace and deform. This is a consequence of the extrinsic formulations

of their data-structures and the artefacts that these require to cope with morphology

updates, namely buffer zone and cell size. The former aims to compensate the lack of

relationship between enclosed and bounding volume; the latter compromises the over-

all size of the data structure with the crucial, but expensive, task of keeping a tree

well-balanced.

Finally, the potential of spatial coherence has been often neglected in computational

mechanics. Only (71) and (127) used it to reduce the updating costs of binary trees

and AABBs. Unlike other fields, in computational mechanics spatial coherence has

been restricted to global contact search algorithm only. The few studies which take

advantage of this technique are limited to the solution of closest-neighbour search,

whereas in robotics and computer graphs is used to accelerate all levels of hierarchical

methods.

2.4 Distance methods for convex bodies

A distance query may be formulated as an optimisation problem, and it is well-known

that, for convex functions, a local minimum coincides with a global minimum (30, 172).

From this analogy between geometry and optimisation theory, it is easy to see the

advantage of solving distance queries on convex bodies rather than concave. These

can be seen as the domain of the distance function, for which its global minimum is

sough numerically. The solution of such problem is mathematically, and geometrically,

24



Chapter 2. LITERATURE REVIEW

easier when carried out on convex domains. For this reason, in practise, all distance

queries in computational mechanics are formulated only between convex shapes. This

section surveys the literature to identify versatile, robust and fast distant algorithms

for convex bodies.

2.4.1 Existing methods

The aim of this section is to identify existing algorithms that (i) are in pursuit of well-

posed solutions to distance queries, and (ii) fulfil the requirements listed in Section 2.2.

The importance of defining a mathematically sound problem before solving a dis-

tance query is often overlooked by the methods published in the literature. Ill-condition

problems can ruin the robustness of distance algorithms as finite-precision arithmetic

comes into play. For this reason, defining a problem that admits a unique solution is

the key for designing a robust method.

A well-posed problem is derived by recasting the original distance query from phys-

ical to configuration space. This is done by taking the Minkowski difference between

two convex bodies ΩP and ΩQ to obtain the configuration space obstacle (CSO):

CSO = ΩP − ΩQ = {xP − xQ : xP ∈ ΩP , xQ ∈ ΩQ} (2.11)

which is a set of vectors embedded in an affine space with a fixed frame and ori-

gin O (140). It has been shown that a distance query translates into finding the point

of minimum norm ν (CSO) (39, 89); moreover, since the CSO is convex, it exists a

unique vector ν (CSO) which is optimal in the sense that:

‖ν (CSO) ‖ = d(CSO, O). (2.12)

The newly published Minimum Norm Duality theorem (52) proves geometrically that
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Figure 2.4: Physical (a) and configuration space (b) for separated spheres ΩP and
ΩQ . The configuration space obstacle (CSO) has a unique point of minimum norm
ν (CSO). Physical (c) and configuration space (d) for colliding spheres P and Q , in
this case the CSO includes the origin.

to the minimum distance d(CSO, O) corresponds to a separating hyperplane between

the CSO and the origin O . Together with Eq. (2.11), this theorem establishes a link

between configuration and physical spaces with the following equality:

ν (CSO) = zQzP = zP − zQ, (2.13)

where zP and zQ are a pair of witness points in ΩP and ΩQ , respectively. Therefore,

a well-posed problems equivalent to Eq. (2.10) is defined. Notice that this literature

review ignores linear programming algorithms since unable to return a pair of witness

points.

Intuitively, the most important consequence of the Minkowski operator is that if the

bodies are apart from each other, the minimum norm vector has norm ‖ν (CSO) ‖ =
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d(ΩP ,ΩQ). Consider for example the two disjoint spheres ΩP and ΩQ in Figure

2.4(a). The CSO resulting from the Minkowski difference ΩP −ΩQ , depicted in Figure

2.4(b), has a unique vector ν (CSO) whose norm corresponds to the distance between

the spheres in physical space. For contacting bodies d(ΩP ,ΩQ) = 0 and naturally

ν (CSO) = 0 . The example in Figure 2.4(c) shows two overlapping spheres, and the

CSO in Figure 2.4(d) includes the null vector.

A number of studies observed that the distance algorithms exploiting the Minkowski

difference are particularly efficient. Originated from the early works of Lozano-Perez

and collaborators (33, 140, 141), this branch of algorithms is called simplex-based and

is widely adopted for motion path planning in robotics and other fields (see (1) and

references therein). Renowned simplex-based distance algorithm are: the Gilbert–

Johnson–Keerthi (GJK) (89), Gilbert–Foo (88), Rabbitz’s method (197), Chung–Wang

(CW) (45), ContactScope (204), enhanced GJK (38), RGJK (178) and EPA-GJK (225).

Another alternative family of fast algorithms, which does not exploit the Minkowski

difference, is called feature-based ; this includes: Common-Plane (CP) (50), Lin–Canny

(LC) (132), I-Collide (46), Voronoi-Clip (V-Clip) (154) and SWIFT++ (62). These

methods work well in practise, however, not all of them solve well-posed problems.

The high speed of simplex-based and feature-based algorithms is due to the low

computational complexity of the evaluation of support mapping. Its cost, in fact,

scales linearly with the number of features (e.g. vertices or facets) of the bodies. This

is a consequence of the Minkowski operator, which never computer the CSO explicitly.

This cost may be reduced even further with incremental algorithms that cache data

between subsequent solutions steps. All feature-based algorithms can naturally exploit

spatial coherence by tracking the closest features (usually Voronoi region) between two
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bodies, but their applicability is strictly limited to bodies discretised by polytopes.

The only method which had its applicability extended beyond distance queries and

beyond polytopes is the GJK algorithm. This procedure may be applied to quadrics

(178), AABBs (225) and NURBS (221); moreover, unlike often reported in the lit-

erature, for overlapping bodies this procedure can compute the penetration vector

(38, 225).

When compared to other methods, the GJK algorithm has been proven to be one

of the fastest procedures. Cameron (37) compared his enhanced GJK with the Lin

and Canny (LC) algorithm (132), showing superiority of the former. More recently,

two studies (154) and (45) concluded that GJK algorithm has comparable computa-

tional costs to the Voronoi-clip (V-Clip) and Chung-Wang (CW) algorithms. In fact,

incremental versions of GJK have shown almost-constant time complexity. The Fast

Common plane (FCP) (168) exploits space coherence but at the same time introduces

approximations to the distance computation. More importantly, both CP and FCP

store the common plane in a relatively complex data-structure that modern computer

architectures would struggle to cache efficiently. The GJK algorithm does not require

any of that.

Because of its extreme versatility and high performance, the GJK has been adopted

in a wide range of applications and patents. These include, but are not limited to:

robotics (58, 169, 257, 258), real-time rendering (105, 122, 214), rigid-body dynamics

(90, 199, 217), medical surgery (135), computer graphics (164, 206), CAD (124), physics

(91, 152, 157) and, rarely, in computational mechanics (232).

To understand the reasons why the GJK algorithm has not been extensively applied

in computational mechanics, the next section introduces its theoretical framework.
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(a) (b) (c) (d)

Figure 2.5: In R3 a simplex can either be a point (a), a line segment (b), a triangle (c)
or a tetrahedron (d).

2.4.2 The Gilbert-Johnson-Keerthi (GJK) algorithm

The GJK algorithm computes a pair of witness points by solving the equivalent problem

of finding the minimum norm vector of the CSO. This unique vector was introduced

in Eqs. (2.12) and is denoted by ν (CSO).

The explicit computation of the entire CSO at runtime is computationally pro-

hibitive but, alike other simplex-based method, the GJK algorithm seeks the solution

ν (CSO) by means of a simplex. Let us recall that a m-simplex τ is the convex hull of a

set of m+1 affinely independent points {s1, ..., sm+1} in Rn , for m ≤ n . The simplices

for three-dimensional problems are: vertices, line segments, triangles and tetrahedrons.

Figure 2.5 shows examples of 3D simplices.

For this particular application, the simplex is described by a set of points on the

frontier of CSO. This guarantees that the simplex is a subset of CSO. In fact, since

the CSO is convex, every convex combination of points of CSO belongs to CSO and

therefore τ ⊂ CSO.

The GJK procedure seeks ν (CSO) iteratively. At each k -th iteration, the simplex

τk is updated to move as close as possible to the origin of the configuration space.

When ν (τk) is sufficiently close to ν (CSO), the algorithm terminates as the solution

to the equivalent problem in Eq. (2.12) is found.
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Figure 2.6: Illustration of iterations undertaken by the GJK algorithm for an arbitrary
CSO. The first iteration is initialised by the user (a), the second (b) and the third (c)
iterations converge toward the point of minimum norm which is reached at the fourth
iteration (d).

The GJK algorithm may be interpreted as the following conditional loop:

while Not close enough (vk)

vk+1 ← refine direction (vk)

end

(2.14)

where vk = ν (τk) is introduced to emphasise the direction toward which the simplex is

moved at the k -th iteration. An illustrative sequence of steps is illustrated in Figure 2.6.

The iterative search descends in the sense that the simplex ν (τk+1) offers a better

approximation to ν (CSO) than ν (τk). This is achieved by removing from τk a point

that is “far from O”, and adding a closer point wk ∈ CSO to form τk+1 such that:

‖ν (τk+1) ‖ = ‖ν (conv({τk, wk})) ‖ ≤ ‖ν (τk) ‖. (2.15)

The preceding equation states that a sequence of simplices indeed converges monoton-

ically to ν (CSO). Furthermore, convergence is achieved in a finite number of steps for

polytopes (89).

The point wk is of vital importance for the GJK algorithm. This is highlighted

in Eq. (2.15); in fact, from wk is defined the new search direction vk+1 and in turn

the outcome of the exit close enough condition in Eq. (2.14). The point wk may

be geometrically interpreted as the furthest point from the hyperplane defined by vk

along the direction vk , see Figure 2.6. This point, not necessarily unique, lays on the
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outer boundary of the CSO and is such that hCSO(vk) = (wk − O) · vk . Next, let us

present how the point wk ∈ CSO may be computed without evaluating the entire CSO

explicitly.

To find the point wk ∈ CSO, the GJK algorithm computes the support function on

each body independently rather than on the CSO. This allows to avoid the evaluation

of the entire CSO, which indeed would be too expensive. Instead, the point wk on the

frontier of the CSO is computed as the support mapping of a compound, see Eq. (2.9).

The literature does not present a demonstration of the fact that ν (CSO) can ef-

fectively be represented by caching few solutions of the support function; the following

demonstration fills this gap. The GJK algorithm terminates when ν (τk) = ν (CSO).

Consider a pair of witness points zP and zQ and a m-simplex being expressed by

the vertices τ = {s1, ..., sm+1} , where each vertex is given by si = pi − qi , with

pi ∈ P, qi ∈ Q . For a set of positive scalars λi , the solution ν (τk) writes:

ν (τk) =
m+1∑
i=1

λisi =
m+1∑
i=1

λi(O + si) =
m+1∑
i=1

λi(O + qipi)

=
m+1∑
i=1

λi(O + Opi + qiO) =
m+1∑
i=1

λipi +
m+1∑
i=1

λiqiO

= zP +
m+1∑
i=1

λiqiO = zQzP + zQ +
m+1∑
i=1

λiqiO

= zQzP +
m+1∑
i=1

λi(qi + qiO) = zQzP +O.

=
m+1∑
i=1

λi(pi − qi) +O. �

(2.16)

Therefore, at the most m + 1 solutions of the support function need to be stored in

memory to describe ν (τk).

The rest of this section illustrates geometrically how the GJK algorithm solves a

distance query. Given the two polygons P and Q in Figure 2.7(a), we wish to compute
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Q

P

(a) Polygons P,Q and separating
axis in red.

CSO O

v1

(b) Iteration k = 1: τ1 = {D-G} ,
W1 = τ1 and ν (τ1) = D −G .

CSO O

v2

(c) Iteration k = 2: τ2 =
{B-E,D-G} , W2 = τ2 and
ν (τ2) = λ1B-E + λ2D-G.

CSO O

v3

(d) Iteration k = 3:
τ3 = {C-E, B-E, D-G} ,
W3 = {C-E, B-E} ,
ν (τ3) = λ1C-E + λ2B-E.

Figure 2.7: Iterative GJK procedure for the pair of distant polygons in (a). At the first
iteration (b) an arbitrary search direction v0 is set downward. At each further k -th
iteration (c)-(d) this is recomputed as the point of a simplex τk closest to origin lays
in the (orange) Voronoi region containing the origin.

the minimum distance d(P,Q), which is the norm of the separating vector depicted

in red. Since the bodies are distant, a pair of witness points defining the separating

vector exists. The GJK algorithm begins by initialising W = τ0 = ∅ and an arbitrary

search direction v0 . In our example, v0 is set downward, such that the solution to

the support mapping along the direction −v0 is D-G. This identifies a solution vector

for the support function, in fact hCSO(v0) = D-G · v0 . For the first iteration k = 1,

the simplex is τ1 = {D-G} and v1 = D-G . All quantities involved are illustrated

in Figures 2.7(b) (notice that the CSO is shown for illustration purpose only). In
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the second iteration B-E is found to be the farthest point of the CSO along −v1 ,

and is listed first in τ2 . Figure 2.7(c) shows that both vertices support the point of

minimum norm ν (τ2), which is then used to update the search direction v2 . A similar

situation occurs in the third iteration. As shown in Figure 2.7(d), the subset supporting

ν (τ3) is W = { C-E , B-E } ⊂ τ3 . Moreover, because ν (τ3) = ν (CSO), the GJK

algorithm terminates. The reader can observe that the radius of the dashed circles

in Figures 2.7(b)–2.7(d), centred at the origin and passing by the point of minimum

norm of each simplex, decreases monotonically at every iteration. This is a geometrical

interpretation of the fact that the GJK algorithm is a descending method.

2.4.3 Gaps in the literature

A number of studies have reported that the GJK algorithm lacks robustness, and for

this reason it is unsuitable for engineering simulations. This is due to the numerical

error which can propagate to a new iteration and lead to infinite loops. The erroneous

results thus generated can, for example, ruin the user experience in a computer game,

produce instabilities in finite element simulations, or lead a real-time collision avoidance

systems to failure.

The numerical error is mostly due to the refine direction function in Eq. (2.14),

which implements the so-called distance sub-algorithm due to Johnson’s (106). Let

us recall that this function is vital to the GJK algorithm since it defines the search

direction, updates the simplex and passes the input for the exit tests. For these reasons,

the Backup procedure was originally added to handle pathological cases at the expense

of CPU time and implementation effort (89).

To improve the performance of the GJK algorithm, Van den Bergen (224) replaced
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the Backup procedure with a set of more robust exit conditions. These can establish

whether: (a) the two bodies are in contact, or (b) the simplex τk cannot move closer

to the origin. The former is true if the simplex contains the origin O , or if:

‖vk‖2 ≤ εtol max{‖y −O‖2 : y ∈ W} (2.17)

where W is the smallest subset of vertices in τk that supports ν (τk). The latter is

true if wk ∈ τk , or if:

‖vk‖2 − vk ·wk ≤ ε2
rel‖vk‖2. (2.18)

The values εtol and εrel set the accuracy of the GJK algorithm. For engineering

applications, these can be set in the order of the machine precision.

However, the same author reported in (225) that the main source of numerical

instability is the cancellation error within the Johnson’s algorithm. The exit conditions

introduced in Eqs. (2.17) and (2.18) are indeed better than the original ones, but cannot

counterbalance the lack of robustness of Johnson’s algorithm. This issue, not addressed

by Van der Bergen, can only be resolved by replacing the original sub-algorithm.

The only attempt to replace Johnson’s algorithm was formalised, certainly not for

the first time, by Ericson (64) and is particularly popular within the computer graphics

community (218). Despite being mathematically equivalent and simpler to grasp, the

implementation of this method is particularly involved as it requires a cascade of condi-

tional statements difficult to debug. More importantly, this method is computationally

more expensive.

To conclude, as recently reported in (97, 173), the GJK algorithm still lacks robust-

ness, an essential requirement without which it cannot be applied in computational

mechanics.
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2.5 Distance methods for primitives

A primitive is the simplest geometrical entity contributing to the description of a

whole solid body. For the particular applications in computational mechanics, exam-

ples of primitives are: spheres, ellipses, line segments, NURBS curves, triangles, and

tetrahedrons. Computing the distance between primitives is extremely common in all

numerical methods used in engineering and, to facilitate the coupling between differ-

ent methods, it is desirable to design a versatile algorithm that handles those queries

which do not allow a closed-form solution. Furthermore, accuracy and robustness are

major concerns of such algorithms. This section reviews existing methods and provides

background notions for understanding those issues that prevent from solving distance

queries accurately.

2.5.1 Direct methods

Apart from few particular cases, such as sphere–sphere queries, computing the distance

between primitives is difficult and expensive. The coupling of DEM and FEM is,

from this point of view, notoriously challenging. Triangles, squares, tetrahedrons and

hexahedrons are the most common shapes in computational mechanics, but also at the

most difficult ones to deal with.

The algorithms designed to solve distance queries between primitives in a single

shot are known as direct methods ; that is, a method that attempts to find a solution

without iterations. These methods combine a series of conditional statements to solve

those distance queries that do not admit closed-form solution.

The literature presents a large number of direct methods to carry out tests between
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specific pairs of primitives. Triangle–triangle queries may be computed by means of

potential method (160), an approach that has been successfully applied to 2D and

3D polydisperse triangular elements (249). Similar problems have been addressed by

formulating the distance query as an optimisation problem (26, 27, 41). Another

specific type of query, driven by the DEM in particular, is the triangle–sphere test. This

may be solved using a simple geometric method (64), but higher performances may

be achieved with a recently proposed method based on barycentric coordinates (100).

Similarly, the distance between quadrilateral facets and spheres may be computed with

specific methods described in (43, 114).

Having procedures that are specialised for only one type of distance query increases

the implementation effort, and do not guarantee an improvement of performance. Be-

cause of the high volume of calls to functions which test primitives, these routines need

to be highly optimised, but the optimisation of many routines is a tedious and time-

consuming work. Also, the data must be stored in such a way to exploit the caching of

modern processor architectures. From a software development point of view, designing

a single function that deals with more than a single query would make the optimisation

easier and more effective.

Consequently, a number of algorithms for solving distance queries between different

primitives have been developed. For instance, the literature presents many algorithms

that solve both node–edge or node–facet interaction. These belong to the family of

algorithms that solve point–simplex problems.

The general case of point–simplex problem is considered, that is: a distance query

between a point and any of the simplices defined in 3D space. This choice is motivated

by the number of applications in which a particular case of the point–simplex problem
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plays an important role. Some of these applications are:

• Contact problems based on the FEM master-slave formulation (246).

• Specific distance queries of edge–sphere, triangle–sphere and tetrahedron–sphere

which are commonly encountered in DEM/FEM problems.

• Distance queries such as quadrilateral elements and spherical particles by subdi-

viding the former in triangular facets, therefore expanding the capability of other

existing methods, such as (117, 147, 235, 236).

Formally, such problem consists of calculating the minimum distance between a

query point and all faces of a simplex. An m-simplex has (2m+1 − 1) faces (e.g.

vertices, edges, facets, volume) and the solution essentially is, in the most general case,

the point of a tetrahedron that is closer to the query point than any other point of the

tetrahedron.

Because of its wide applicably, the point-simplex problem is extensively studied

in the literature. One of the most renown procedure in the computational mechanics

community is the inside–outside algorithm (238). Its original version has shown very

low computing cost, but it failed to detect some intersection and has been consequently

fixed in (202). Other methods in the literature include (26, 63, 104, 156, 168, 173,

256); neither of these studies, however, provides arguments supporting the claims on

the robustness of the methods. In particular, when computing the normal vector for

projecting a point on a plane, the cancellation error leads to degenerate cases which

are not addressed in none of these studies. Another example is the solution of point–

projection problems. For all these cases, degenerate geometries cause failures unless

handled with care.

General algorithms that handle degenerate cases exist (61, 96, 155, 215), but none of

37



Chapter 2. LITERATURE REVIEW

these exploits spatial coherence to accelerate distance queries. Essentially, for a general

point–tetrahedron query, these methods examine all 15 subsets (4 vertices, 6 edges, 4

faces and the interior) of the tetrahedron and test which one of these contains the

closest point to the query point. There are cases where, by virtue of spatial coherence,

cached data can be reused to eliminate a priori some of these subsets.

As highlighted in Section 2.3, spatial coherence allows to save computing time for

problems which are solved incrementally; recursive methods make use of coherence

to accelerate point–simplex distance queries. One of these methods was presented in

(138), another one is Johnson’s algorithm (106). The former was designed for geodesic

applications and implements a cascade of conditional statements which is unlike to give

high performance on dynamic simulations. The latter, instead, seems suitable and will

therefore be examined in the next section.

2.5.2 Johnson’s recursive algorithm

A recursive algorithm allows to reuse cached data at subsequent calls to accelerate the

solution of distance queries. The difference with respect to iterative procedures is that

recursive methods can invoke themselves to solve a distance query, and indeed they

may be used to speed-up iterative procedures.

Johnson’s algorithm (106) solves point–simplex distance queries recursively and is

particularly efficient because it exploits spatial coherence. Another advantage is that

its implementation is concise and straightforward.

Let us consider the problem of computing the minimum distance d(O, τ) between

the origin O and a simplex τ . Johnson’s algorithm seeks the solution by computing

the (unique) point ν(τ) closest to the origin than any other point of τ .
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Figure 2.8: For each m-simplex, (2m+1 − 1) Voronoi regions may be defined. The
following regions of a 2-simplex are highlighted: (a) V(3) of the vertex 3, (b) V(1,3) of
the edge {1, 3} and, (c) V(1,2,3) of the facet {1, 2, 3} . For a 3-simplex are highlighted:
(d) V(1) of the vertex 1, (e) V(1,4) of the edge {1, 4} and, (f) V(1,2,4) of the facet {1, 2, 4} .

The idea is to look for ν(τ) in all Voronoi regions associated to τ . Recall that a

Voronoi region is defined as the set of points which are at least as close to a point of

the face as to any other point of τ not in the face. For example, the region associated

to one of the vertices of a two-dimensional simplex is represented in Figure 2.8(a).

Other examples of regions are shown in Figures 2.8(b) and 2.8(c) for a planar simplex,

whereas Figures 2.8(d)-2.8(f) show examples in R3 . The Voronoi region associated to

a face of τ is denoted by Vκ , where κ is an ordered and non-empty tuple which lists

the indices i of the set {si} defining the face Vκ is associated to.

An intuitive illustration of the way Johnson’s algorithm inspects the Voronoi regions

is shown in Figure 2.9 for a 2-simplex. The bottom-up arrows indicate that the method

begins the search by inspecting the Voronoi regions associated to the vertices of the

simplex. If ν (τ) cannot be found in either of these three, the search recursively passes

to the next levels, where edges and facet are inspected until the solution is found.

The rest of this section presents technical details about the original Johnson’s al-
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Figure 2.9: Johnson’s algorithm conducts a bottom-up search across all Voronoi regions
of a 2-simplex. This representation is also known as Hasse diagram.

gorithm as formulated in (89). The algorithm expresses the point ν (τ) as a convex

combination of the smallest set of vertices defining τ ; this requires to compute barycen-

tric coordinates and the smallest subset W ⊆ τ . The subset W identifies, with a tuple

κ , the face of an m-simplex supporting ν (τ). It has been shown in (89) that a point

corresponds to ν (τ) if and only if its barycentric coordinates λj satisfy:

λj > 0 and λi ≤ 0 ∀ j ∈ κ : i = 1, ...,m+ 1, i 6= j. (2.19)

In the preceding equation λj and λi correspond to the barycentric coordinates for the

simple τ and its subsets, respectively. Effectively the solution of a projection problem,

Eq. (2.19) guarantees that ν (aff(W )) = ν (conv(τ)) (224), which geometrically means

that the vector ν (τ) is perpendicular to a face of the simplex. This face is “optimal”

in the sense that it minimises, by virtue of the perpendicular condition, the distance

between the origin O and the simplex. Johnson’s algorithm recursively inspects all the

Voronoi regions of a m-simplex until the signs of the barycentric coordinates comply

with Eq. (2.19).

Behind the computational efficiency of Johnson’s algorithm stands a recursive so-

lution to the algebraic system that evaluates the barycentric coordinates in Eq. (2.19).

Let a simplex τ = {si} , with i ∈ I = {1, ...,m + 1} , have its point of minimum norm

ν (τ) laying on a r -face defined by the points in {sj} , with j ∈ κ . This face is per-
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pendicular to a vector ν (τ) or, equivalently, (sj − sl) ·ν (τ) = 0, for all j 6= l , where l

is an arbitrary element of κ . The vector ν (τ) = ν (τ)−O is written in terms of r+ 1

barycentric coordinates λj to assemble an algebraic system Aλ = b which writes (89):

1 ... 1

(s2 − sl) · s1 ... (s2 − sl) · sr

... ... ...

(sj − sl) · s1 ... (sj − sl) · sr





λ1

λ2

...

λr


=



1

0

...

0


(2.20)

The index l ∈ κ must be kept constant, usually l = 1, and j takes the remaining

r values in κ . Johnson’s algorithm recursively solves Eq. (2.20) for all subsets of τ .

Because κ has cardinality at the most 4, the system Aλ = b can be efficiently solved

by using Cramer’s rule.

A solution of the algebraic system in Eq. (2.20) can be written by combining

Cramer’s rule with a cofactor expansion as follows:

λj =
−11+j det A1j

det A
(2.21)

where A1j are minors of A obtained by removing the first row and the j -th column

from A . To understand the combinatorial logic of Johnson’s algorithm, let us look at

A as the minor of another matrix built in the same fashion but for a larger subset. This

larger subset is obtained by adding to W a vertex of the simplex si not yet included

in W , namely {sj : j ∈ κ} ∪ si for an i ∈ I − κ . This leads to a recursive solution for

Aλ = b :

λj =
∆j(W )∑
j∈κ ∆j(W )

. (2.22)

Where ∆j(W ) is a cofactor of A for one of the (2m+1− 1) subsets W of τ . Since the
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vertices of τ are linearly independent:

∆j(W ) = −11+j det A1j. (2.23)

Johnson’s algorithm computes the values ∆j(W ) in order of increasing cardinality

of W . For the first m+ 1 singletons, the solution is trivial:

∆j({sj}) = 1 j ∈ I, (2.24)

whereas for the remaining subsets:

∆i(W ∪ si) =
∑
j∈κ

∆j(W )(sj · sl − sj · si) for i ∈ I − κ. (2.25)

The equation above is tested for all subsets of τ , keeping l ∈ κ constant, until Eq. (2.19)

is verified. By transferring the constraints of Eq. (2.19) on ∆j , it can be shown (89)

that the barycentric coordinates for the vertices of a subset W = {sj : j ∈ κ} comply

with Eq. (2.19) if: (i) ∆j(W ) > 0 and (ii) ∆i(W ∪ si) ≤ 0 for all i in the complement

of κ in I = {1, ...,m + 1} . If all barycentric coordinates of the vertices in W are

strictly positive, then all the subsets of cardinality |W |+1 are inspected. If these have

non-positive barycentric coordinates, the algorithm terminates (89).

A speed-up can be achieved for those problem in which the simplex is built vertex-

by-vertex by caching the values of ∆i(W ). These values may be reused at a subsequent

call of Johnson’s algorithm and thus reduce the number of operations required to

evaluate Eq. (2.22).

2.5.3 Gaps in the literature

The cancellation error can induce distance algorithms to fail, but the computational

mechanics community overlooks this aspect to a great degree. Particularly when it

comes to point projection and point inversion problems, imposing the orthogonal con-
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dition by means of a normal vector is an operation particularly prune to rounding

error (112, 113, 176).

A close inspection shows that the majority of existing methods does not handle

naturally degenerate geometries. Alike many other, Johnson’s algorithm is prune to

cancellation error and it therefore lacks robustness. If the set of vertices in Eq. (2.20)

is affinely dependent, or nearly so, the algebraic system is ill-condition and cannot

be solve accurately on finite-precision machines. This shortcoming was observed in

various studies (89, 225), but it has never been addressed. Overall, despite its numerical

instabilities, the Johnson’s algorithm is still an extremely efficient method. Addressing

its lack of robustness would improve point–simplex distance queries in the fields of

robotics, computer graphics and engineering.

A brute-force search on all Voronoi regions can be robustly implemented and can

even exploit spatial coherence, but its performance is poor. One can conclude that

the procedure for closest point to tetrahedron presented in (64) is slow by the cascade

of conditional statements required, but also speculating on the amount of advanced

algorithms published to solve the same problem. However, the literature does not

present a study that compares the performance of this brute-force search with other

methods. It is therefore not known what gain advanced procedures could bring to the

solution of point–simplex distance queries.

2.6 Concluding remarks

This chapter has highlighted the importance of distance algorithms and has reviewed

the literature beyond the field of computational mechanics.
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The following needs and open questions have been identified:

1. Need for versatile algorithms that handle different representations of solid bodies

(e.g. quadrics, NURBS, polytopes),

2. Limited understanding on the robustness of certain procedures published to date

and how this affects the overall performance of the algorithm,

3. Spatial coherence is rarely exploited in computational mechanics,

4. Arbitrary bodies (i.e. non-convex and with irregular morphology) are best treated

by hierarchical algorithms, but existing methods rely entirely on extrinsic space-

partitioning schemes and the majority treats only spheres,

5. The GJK algorithm has been rarely applied to computational mechanics because

of its lack of robustness,

6. The lack of robustness of the GJK algorithms has been reported but never ad-

dressed,

7. Need for a robust point–simplex distance algorithm that exploits spatial coher-

ence,

8. Few studies support claims on the robustness with in-depth analysis of degenerate

simplices arising, for example, in point projection problems.

Altogether, these gaps have identified the limitations that make distance queries

one of the major computational bottleneck in engineering simulations.
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Novel hierarchical framework

The literature review concluded that existing distance algorithms are a major com-

putational bottleneck and that further development is required to address the need

for more versatile and faster distance algorithms. This chapter introduces three new

procedures for the solution of distance queries: the first one is a robust and recursive

method for point–simplex tests, the second solves distance queries between arbitrary

convex objects accurately to machine precision, and the third algorithm is specifically

designed for large simulations involving concave bodies. These are presented indepen-

dently because they can work independently, however they can also be combined into

a hierarchical framework to solve complex distance queries.
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3.1 New recursive method for basic primitives

The first novelty presented in this chapter is the Signed Volumes method : a procedure

for computing the minimum distance between a point and a simplex. The aim is to

supply a method which results more robust, and as fast as Johnson’s algorithm. This

section presents the formulation and implementation of this method.

3.1.1 Overview of the Signed Volumes method

To solve a point–simplex distance query, one needs to find the unique point of the

simplex that is closer to the query point than any other point of the simplex. The

solution is expressed, for the practical reasons described in Section 2.5.2, as a convex

combination of the smallest subset of simplex vertices whose barycentric coordinates

are strictly positive. Therefore, the unknowns are the minimum subset of vertices and

the corresponding barycentric coordinates that define the closest point, see Eq. (2.16).

Johnson’s algorithm (106) is an efficient method for this type of queries but it lacks

accuracy and robustness when dealing with degenerate geometries. The reasons for

that are rooted in the coefficient matrix A of the algebraic system in Eq. (2.20):

1. The entries of A involve arithmetic operations that cannot be computed accu-

rately due to cancellation error; and

2. A is rank deficient, therefore the algebraic system does not admit unique solution.

The novel Signed Volumes method addresses these issues by: moving any arithmetic

operation to the right-hand side of the algebraic system, and by removing affinely

dependent vertices before assembling the coefficient matrix. The idea is therefore to

design a new method that assembles a coefficient matrix whose entries are as simple
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as possible and does not involve arithmetic operations, whereas degenerate simplices

are handled by removing those affinely dependent points. Altogether this eliminates

inaccuracies due to cancellation error and guarantees that the algebraic system is solved

accurately. Further details on the formulation of the Signed Volumes method and its

implementation are presented in the following sections.

3.1.2 Theoretical algorithm

The newly proposed procedure is named the Signed Volumes method because it eval-

uates the volume form µ(τ) of a m-simplex τ and of other m + 1 fictitious simplices

associated to it. Let us first recall the notion of volume form, introduce the fictitious

simplices and finally present the method itself.

The volume form is more commonly known as mixed product, and is defined as

the dot product of a vector with the result of a cross product between two other

vectors. The terminology volume form is here preferred to emphasise the geometrical

interpretation of µ(τ), which is the volume of some geometric objects (82). More

specifically, µ(τ) is proportional to the signed measure of length, area or volume of

the simplices in Figure 2.5. The most relevant properties of the volume form are: (i) it

changes sign if the orientation of a vector is changed, and (ii) it is null for linearly

dependent vectors (82).

A fictitious simplex is obtained by substituting the origin O to a vertex of τ . Since

τ has m + 1 vertices, m + 1 fictitious simplices are defined. Notice that, because of

property (i) of the volume form, these must be built with care to guarantee consistency

in the sign of the volume forms. Figure 3.1 shows an example how to correctly operate

on a 2-simplex in R2 . If the triangle includes the origin O , its three fictitious simplices
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s1

s2

s3

O

Figure 3.1: From a simplex τ = {s1, s2, s3} , three fictitious simplices {O, s2, s3} ,
{s1, O, s3} and {s1, s2, O} are defined. Notice that, for this example, their volume
forms have the same signs as illustrated by the three arrows.

must be a permutation following the right-hand rule. This is illustrated by the arrows

inside each fictitious simplex in Figure 3.1.

The Signed Volumes method aims to solve a distance query between the origin O

and a simplex τ by computing the point of minimum norm ν (τ). This is expressed as

a convex combination of the smallest subset W ⊆ τ of vertices supporting ν (τ) and a

set of barycentric coordinates associated to each vertex.

The theoretical Signed Volumes method takes three steps:

1. Project, if possible, the vertices of τ into a lower dimensional space, thus de-

scending from Rn to a reduced space Rr , with r < n .

2. Discard the vertices, if any, not supporting ν (τ) to identify the smallest sub-

set W . This obviously includes discarding affinely dependent vertices.

3. Solve an algebraic system of equations Mλ = p to compute the barycentric

coordinates λ .

The aim of Step 1 is to lead the search of W (carried out in Step 2) toward

a space in which is “safer” to compute the barycentric coordinates (carried out in

Step 3). Effectively a preprocessing effort, Step 1 enables the Signed Volumes method
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to execute subsequent steps accurately. The projection relies on the fact that the

barycentric coordinates are invariant to affine transformations (48), thus allowing to

compute λ in a lower-dimensional space Rr , and to use these values in the space Rn

where the simplex reside.

The smallest dimension r of the reduced space Rr is sought recursively though one

or more projection steps. For a m-simplex τ , the algorithm takes r = m at first and

tests, in Step 2, whether W ≡ τ . If this is not the case, a (m − 1)-simplex τ r is

projected onto a lower dimension. Since the barycentric coordinates are invariant to

projection, ν (τ r) = ν (τ), and a theorem due to Carathéodory (240) establishes that

ν (τ r) can be expressed as a convex combination of r + 1 or fewer points of τ r (240).

Therefore, the point ν (τ), laying on a r -face of τ , may be expressed as:

ν (τ) =
∑
i∈I

λisi : λi ≥ 0,
n+1∑
i=1

λi = 1 (3.1a)

ν (τ) =
∑
j∈κ

λjsj : λj > 0,
r+1∑
i=1

λj = 1 (3.1b)

where I = {1, ..., n+ 1} and κ ⊆ I , for r ≤ n .

Unlike Johnson’s algorithm, the Signed Volumes method verifies that all barycentric

coordinates are strictly positive by means of Eq (3.1b). Let us recall from Chapter 2

that Johnson’s algorithm, instead, solves a system of equations for each subset of τ ,

and only then it tests whether Eq. (2.19) is verified to ensure that all λj ’s are greater

than zero. The Signed Volumes automatically guarantees that λj will be positive since

it first finds the minimum subset W expressed by κ in Eq. (3.1b), and afterwards it

solves Mλ = p in Step 3.

Step 2 is based on the observation that it exists a relationship between the sign of

the volume forms of the simplex τ , of its m+1 fictitious simplices and of the unknown
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subset W supporting ν (τ). For example, all these coincide in the simplex in Figure 3.1

because W ≡ τ . The Signed Volume method compares the sign of ν(τ) and the signs

of its fictitious simplices, if these coincide (W ≡ τ ), otherwise a vertex is discarded.

A vertex sj can be discarded from a m-simplex if it resides in the opposite side of the

hyperplane defined by the other sk points, with k ∈ {1, ...,m + 1} − {j} . This step

also allows to remove affinely depend points from the simplex.

Step 3 computes the barycentric coordinates and is executed only when the smallest

subset W of τ supporting ν (τ) has been projected onto the lowest-dimensional space

Rr . This is achieved by a recursive execution of Steps 1 and 2.

The barycentric coordinates are computed from an algebraic system whose co-

efficient matrix does not involve arithmetic operations. The Signed Volumes method

assembles an elementary system of r+1 equations based on Eq. (3.1b) only: Mλ = p .

In extended form this writes:
s1

1 ... s1
r+1

... ...

sl1 ... slr+1

1 ... 1



λ1

...

λr+1

 =


p1

...

pl

1

 (3.2)

The first rows of M contain the l -th coordinate of sj and the last one consists of the

(r + 1)-dimensional unit vector. The column vector p contains the coordinates of the

point obtained from the projection of the origin O onto the affine-hull of the points

sj , followed by 1. Since r ≤ 3, the system involves no more than four equations and a

solution can be efficiently computed using Cramer’s rule.

The simple construction of the matrix M in Eq. (3.2) plays a pivotal role in the

development of a robust procedure: this only enforces the partition of unity on the

values λj ’s and not the (orthogonal) condition of minimum distance between simplex
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and origin. The Signed Volumes method is robust because it transfers the condition

of minimum distance to a place that does not compromise the solution of the equation

system, namely: the right-hand side of Eq. (3.2).

The increased robustness provided by the Signed Volumes method over the John-

son’s algorithm is due to the different enforcement of the condition of minimum dis-

tance (Eq. (2.12)). The former embeds it directly into the coefficient matrix (Eq. (2.20)),

whilst the latter relies on the simple matrix M , whose determinant is proportional to

the volume form of the subset W :

det M = r!µ(W ). (3.3)

This can only be null if the points in W are affinely independent, but this is not possible

because of Steps 1 and 2. Therefore, the system Mλ = p cannot be ill-conditioned.

Finally, Figure 3.2 illustrates how the Signed Volumes method seeks ν (τ) for a 1-

simplex, a 2-simplex and a 3-simplex. The top-down arrows indicate that the method

begins the search by looking inside the simplex. If ν (τ) is not supported by all vertices,

a vertex is discarded and the search descends down to a tuple of lower cardinality.

Notice that Figure 3.2(b) is opposite to what Johnson’s algorithm does (see Figure 2.9).

3.1.3 Implementation

The Signed Volumes method has a simple geometrical interpretation that makes its

implementation straightforward.

Algorithm 1 shows the main program from which three functions S3D, S2D and S1D

may be called. Apart from the trivial case that consists of a 0-simplex, each function

is specific to a m-simplex and follows the three steps described in the previous section.
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(1, 2)

(2)(1)
1

2

(b)

(1, 2, 3)

(1, 3)(1, 2) (2, 3)

(2)(1) (3)
1

2

3

(d)

(1, 2, 3, 4)

(1, 2, 4) (1, 3, 4)(1, 2, 3) (2, 3, 4)

(1, 3)(1, 2) (1, 4) (2, 4)(2, 3) (3, 4)

(1) (2) (3) (4)
1

2

3
4

(f)

Figure 3.2: Illustration of how the Signed Volumes method conducts a recursive search
on a line segment or 1-simplices (a), triangle or 2-simplices (b) and tetrahedron or
3-simplices (c). The numbers specify the tuples that identify all faces of a simplex.
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Algorithm 1 Signed Volumes distance sub-algorithm

1: procedure SignedVolumes ( τ )
2: τ has r + 1 vertices
3: if r = 3 then
4: [W ,λ] = S3D( τ )
5: else if r = 2 then
6: [W ,λ] = S2D( τ )
7: else if r = 1 then
8: [W ,λ] = S1D( τ )
9: else

10: λ = 1 , W = τ
return W , λ

Recall that Step 2 discards a vertex not supporting the point of minimum norm; from a

numerical point of view, this is the most challenging steps since it requires an accurate

computation of Eq.(3.3).

A vertex not supporting ν (τ) is found by comparing the signs of µ(τ) and of other

m+ 1 fictitious simplices. The comparison is carried out by the following function:

CompareSigns( a,b ) =



1, if a > 0, b > 0

1, if a < 0, b < 0

0, otherwise.

(3.4)

It should be highlighted that Eq. (3.4) takes into accounts null and NaN values, arising

either from degenerate simplices or rounding error.

The functions S3D, S2D and S1D invoked by Algorithm 1 are described below.

Function S3D This function computes the point of minimum norm ν (τ) of

a tetrahedron, i.e. a 3-simplex, by taking only two of the three steps described in

Section 3.1.2. In the first one, Step 2, the procedure tries to discard a vertex from τ ,

afterwards it solves Mλ = p . S3D receives in input an (ordered) list of vertices {si} ,
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for i ∈ I = {1, ...,m + 1} , and outputs the subset of points W with the barycentric

coordinates that express ν (τ) as in Eq. (3.1b).

Step 2 decides whether or not to discard a vertex by comparing the signs of the volume

form µ(τ) and the other m + 1 simplices. However, a number of operations may be

saved by observing, from Eq. (3.3), that µ(τ) and det M have the same sign: rather

than computing explicitly the volume form of the simplices, the sign of det M may be

used. From Eq. (3.2) M , writes:

M =


sx1 sx2 sx3 sx4
sy1 sy2 sy3 sy4
sz1 sz2 sz3 sz4
1 1 1 1

 (3.5)

and its determinant is given by the following cofactor expansion:

det M =
∑
i=4

j=1,...,4

(−1)i+jMi,j = C4,1 + C4,2 + C4,3 + C4,4 (3.6)

In the preceding equation, Ci,j is a cofactor and Mi,j is a first minor of M : the de-

terminant of matrix obtained by removing the i -th row and j -th column from M . It

is easy to show that the volume form of all fictitious simplices is proportional to the

cofactors C4,j and that, from Eq. (3.3), their signs coincide.

The pseudo-code in Algorithm 2 shows an implementation of S3D that solves the sys-

tem in Eq. (3.2) with Cramer’s rule. Firstly, all terms of Eq. (3.6) are computed, and

their signs compared with CompareSigns to test whether a vertex can be discarded or

not. If all signs are equal, the origin lays inside the simplex and thus all four vertices

are supporting the point of minimum norm. In this case, the barycentric coordinates

are given by: λj = C4,j/ det M for all j . Otherwise, the function CompareSigns has

to be called for each C4,j , with j = {2, 3, 4} , and the j -th vertex can be discarded if
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the output is 0. The computation of the barycentric coordinates is then carried out

by the function S2D. However, if two or more fictitious simplices have sign different to

the sign of det M , S2D is invoked more than once and its outcomes must be compared

to find which is the smallest subset W for which ‖ν (W ) ‖ is minimum.

Algorithm 2 Sub-routine for 3-simplex

1: procedure S3D( {s1, s2, s3, s4} )
2: for j = 1 : 4 do
3: C4,j = −1j+4M4,j

4: det(M) = det(M) + C4,j

5: if CompareSigns(det(M),C4,j ) for all j then
6: λj = C4,j / det(M)
7: W = {s1, s2, s3, s4}
8: else
9: for j = 1 : 4 do

10: if CompareSigns(det(M),−C4,j ) then
11: [W ∗,λ∗] = S2D({si : i ∈ {1, 2, 3, 4} − j})
12: d∗ = ‖

∑
i∈W ∗ λ∗i si‖

13: if d∗ < d then
14: W = W ∗

15: λ = λ∗

16: d = d∗
return W , λ

Function S2D This function computes the point of minimum norm ν (τ) of

a 2-simplex by taking all steps described in Section 3.1.2. It receives in input three

vertices {sj} , with j = {1, 2, 3} , to express ν (τ) as convex combination of the smallest

subset W ⊂ τ as in Eq. (3.1b).

First, S2D projects the origin O onto the affine hull of the vertices in {sj} to obtain

the point pO . To do so, it computes a vector pO :

pO =
s1 · n
‖n‖2

n (3.7)
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where n is the normal of the triangle: n = (s2 − s1)× (s3 − s1).

It should be noted that the denominator of Eq. (3.7) would become null for degenerate

simplices, however S2D handles this case automatically. If the points {sj} are (almost)

affinely dependent, the triangle τ is a needle, and the cancellation error makes all

components of pO a NaN value. When passed to CompareSigns, the NaN value trig-

gers independent searches on selected subsets of τ and the correct answer is robustly

computed.

The vector pO has direction n and length equal to the distance between the origin O

and the affine hull of {sj} ; let us demonstrate that from the point pO , whose coordi-

nates feed into Eq. (3.2), can be computed. Consider the vector h = pO − s1 laying

on the affine hull of {sj} . The projection point is given by: s1 + h = s1 + pO − s1 =

s1 + pO − s1 +O = pO +O . In fact, the projected point is pO = pO +O .

In order to descend from R3 to R2 , the point pO and all the vertices of τ are projected

onto the “safest” Cartesian plane. This is identified as the plane on which the simplex

shades the largest area.

The procedure projects and computes the areas of the fictitious simplices all at once

by evaluating the minors M1,4,M2,4,M3,4 of the matrix in Eq. (3.5). The pseudo-

code in Algorithm 3 shows an implementation of S2D. A for loop computes µmax =

max{|M1,4|, |M2,4|, |M3,4|} and the coordinate J that will be discarded to project the

face and pO onto a Cartesian plane. Afterwards, the signs of fictitious simplices and

µmax are compared using the usual CompareSigns function. For a 2-simplex, the sys-

tem Mλ = p is obtained by discarding the J -th coordinate from the vertices of τ and

pO . This is readily done by removing the J -th row from M , see Eq. (3.5), and using

its first and second minors to compute the barycentric coordinates. For cases in which
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Algorithm 3 Sub-routine for 2-simplex

1: procedure S2D( {s1, s2, s3} )
2: n = (s2 − s1)× (s3 − s1)
3: po = (s1 · n) n / ‖n‖2

4: µmax = 0, k = 2, l = 3
5: for i = 1 : 3 do
6: µ = sk2s

l
3 + sk1s

l
2 + sk3s

l
1 − sk2sl1 − sk3sl2 − sk1sl3

7: if |µ | > |µmax | then
8: µmax = µ, J = i

9: k = l, l = i

10: Discard the J -th coordinate from {si} so that si = [sxi , s
y
i ]

11: k = 2, l = 3
12: for j = 1 : 3 do
13: Cj = (−1)j(pxos

y
k + pyos

x
l + sxks

y
l − pxos

y
l − pyosxk − sxl s

y
k)

14: k = l, l = i

15: if CompareSigns(µmax,Cj ) for all j then
16: λj = Cj /µmax

17: W = {s1, s2, s3}
18: else
19: for j = 2 : 3 do
20: if CompareSigns(µmax,−Cj ) then
21: [W ∗,λ∗] = S1D({si : i ∈ {1, 2, 3} − j})
22: d∗ = ‖

∑
i∈W ∗ λ∗i si‖

23: if d∗ < d then
24: W = W ∗

25: λ = λ∗

26: d = d∗
return W , λ
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pO lays outside the projected triangle, the function CompareSigns is invoked for each

second minor, and if the output is 0, the vertex associated to it is discarded. Similarly

to S3D, if one or more fictitious simplices have sign different to det M , the outcomes

must be compared to find which subset W returns the minimum norm ‖ν (W ) ‖ .

Function S1D This function computes the point of minimum norm ν (τ) of a

1-simplex by taking all steps described in Section 3.1.2. Two vertices s1 and s2 in R3

are the input to this function. As for the other functions, the output is the smallest

subset W of vertices which support ν (τ) and the associated barycentric coordinates.

S1D begins by projecting the origin O onto the affine hull of {s1, s2} to obtain the

coordinates of the vector pO :

pO = s2 +
s2 · t
t · t

t (3.8)

Where t = (s2 − s1). Alike S2D, degenerate simplices passed to Eq. (3.8) cannot

compromise the robustness of the Signed Volumes and it can be shown, following the

demonstration for Eq. (3.7), that the projection point is derived from Eq. (3.8).

In order to descend from R3 to R1 , the point pO and all the vertices sj are then

projected onto the “safest” axis of the Cartesian coordinate system. This is identified

as the axis on which the simplex shades the largest length. Again, this projection is

based on the comparison between the signs of the volume forms of the simplex and the

fictitious simplices associated to it.

The pseudo-code in Algorithm 4 shows an implementation of S1D. The logic for ob-

taining the subset W and the barycentric coordinates is identical to the one described

for S2D.

To conclude, by virtue of Carathéodory’s theorem, the Signed Volumes method

58



Chapter 3. NOVEL HIERARCHICAL FRAMEWORK

Algorithm 4 Sub-routine for 1-simplex

1: procedure S1D( {s1, s2} )
2: t = s2 − s1
3: po = (s2 · t)/(t · t) t + s2

4: µmax = 0
5: for i = 1 : 3 do
6: µ = si1 − si2
7: if |µ | > |µmax | then
8: µmax = µ, I = i

9: Keep only the I -th coordinate from {s1, s2}
10: k = 2
11: for j = 1 : 2 do
12: Cj = (−1)j(sIk − pIO)
13: k = j

14: if CompareSigns(µmax,Cj ) for all j then
15: λj = Cj /µmax

16: W = {s1, s2}
17: else
18: λ1 = 1 , W = s1

return W , λ

solves small systems of only r+1 equations: these correspond to the number of vertices

needed to express the projection of ν (τ). This method recursively seeks the minimum

set of vertices W ⊂ τ and, at the same time, gets rid of affinely dependent vertices.

Whilst Johnson’s algorithm solves a system of equations for each subset W ⊂ τ and

then tests if Eq. (2.19) is verified or not, the Signed Volumes method identifies the

unique subset W for which Eq. (3.1b) holds true, and only then it solves a system of

equations to compute the barycentric coordinates.

3.2 Improved distance method for convex bodies

The second novelty presented in this thesis is a procedure for the solution of distance

queries between convex bodies. It is required that any body representation (e.g. poly-

topes, quadrics, splines) may be treated and that the minimum distance is computed
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accurately to machine precision. Moreover, this chapter presents, for the first time, a

study on the impact that the distance sub-algorithm has on the GJK algorithm. This

provides a better understanding about the numerical instability that were observed,

but not addressed, in the literature.

3.2.1 On the instability of the GJK algorithm

This section investigates the numerical instability of the GJK algorithm. From the liter-

ature review in Section 2.3.3, it was concluded that the lack of accuracy and robustness

prevents this fast procedure from being adopted in computational mechanics. The lit-

erature states that the major source of numerical error is the distance sub-algorithm,

however it does not explain in what capacity and to what extent. Therefore, more the

information are needed before improving for the GJK algorithm.

Let us first notice that the numerical instability manifests itself in infinite loops (173,

225). This is readily explained by looking at the simplistic interpretation in Eqs. (2.14)-

(2.15): if the new search direction, vk+1 , is not better than the previous one, vk , the

procedure does not descent monotonically and the logic breaks.

This observation suggests that the numerical instabilities affect both the final result

and the convergence rate. The fact that Johnson’s algorithm assembles an algebraic

system of equations whose coefficient are affected by rounding error, Eq. (2.20), intro-

duces inaccuracy to the computation of the search direction. Unless vk is computed

accurately to machine precision, the search direction for a subsequent GJK-iteration

cannot lead to the shortest solution-path. This has never been observed in previous

studies, and it will be demonstrated by the numerical experiments in Chapters 4 and 5.

A large number of tests have been carried out to better understand under what
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circumstances the GJK algorithm loops infinitely. It appears that scenarios in which

bodies placed at a distance larger than an certain characteristic length are not critical.

In particular, a series of spherical and polyhedral particles was tested using as charac-

teristic length the diameter of the minimum bounding sphere. However, for bodies that

are very close or touching, about 10% of distance queries fails. For these configurations

simplices develop into slender and degenerate geometries.

In some sense, degenerate simplices are intrinsic to the way the GJK algorithm

solves distance queries. One can observe that flat bodies, and bodies with large curva-

tures, are more likely to originate extremely deformed simplices. The reason is because

a simplex takes the shape of the configuration space obstacle CSO: if the faces of the

CSO closer to the origin are nearly flat, so will be the last simplex of the GJK pro-

cedure. An example in 2D was shown in Figure 2.7, in which the last simplex indeed

adapts to the “flat” portion of the CSO. For 3D cases this problem is even more severe,

however it is difficult to visualise and it will not be detailed further.

Surprisingly, by tracking the simplex evolution during the iterative process, it can

be observed that not all degenerate simplices imply failure. Let us consider a particular

test of two configurations for a pair of polygons: overlapping (Figure 3.3(a)) and distant

(Figure 3.3(c)). The GJK algorithm follows the same procedure illustrated in Figure

2.7 to compute the minimum distance. At the k -th iteration, ν (τk) = ν (CSO),

and hence the GJK algorithm terminates. The particular orientation of the polygons,

however, is such that the simplices τk result nearly-degenerate for both configurations.

Figure 3.3(b) and Figure 3.3(d) present the simplex for the overlapping and distant

polygons, respectively.

The simplices in Figures 3.3(b) and 3.3(d) have the same nearly-infinitesimal area
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(a)

CSO

O

(b)

(c)

CSO

O

(d)

Figure 3.3: Overlapping polygons (a) and distant polygons (c) with the highly-deformed
simplices generated upon termination of the GJK procedure, respectively (b) and (d).

but, since they have different sets of points supporting ν (τk), Johnson’s algorithm fails

only for the overlapping configuration. The reason is that the sub-algorithm converges

when testing different Voronoi regions: V(1,2,3) for the overlapping polygons, and V(1,2)

for the distant polygons. The difference between these Voronoi regions is that the first

one is nearly-degenerate, the second one is not.

The new information obtained from this study is that numerical instabilities af-

fecting the GJK algorithm are not due to degenerate simplices themselves, but rather

to the region of simplex supporting the point of minimum norm. Whenever this is

infinitesimal, the orthogonal condition embedded into Eq. (2.20) yields to numerical
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instabilities. Furthermore, it has been found that the convergence rate decays if the

search direction is not computed accurately at each GJK-iteration.

3.2.2 A new robust sub-algorithm

The Signed Volume method can replace Johnson’s algorithm since it is capable of

computing the search direction vk accurately to machine precision. This method,

introduced in Section 3.1, is designed to be robust and to handle rounding error. For

this reason the Backup procedure can be withdrawn from the GJK algorithm.

It should be noted that, since the GJK algorithm updates the simplices by adding

only one vertex at a time, only 2m (rather than 2m+1−1) Voronoi regions can possibly

support the point ν (τk). For the example shown in Figure 2.7(d), the point C − E

is added last and, for the descending nature of the GJK algorithm, it must support

the simplex point of minimum norm. Whereas, it is unlike that the point D −G can

support the solution. Taking this into account can reduce the number of operations,

but some adjustments have to be made to the Signed Volumes method.

The Signed Volumes method can be tailored to exclude those Voronoi regions that

cannot support the point of minimum norm of a simplex. As already mentioned, since

only one vertex is added per GJK-iteration, the new vertex must support the solution.

This means that any Voronoi region defined by a tuple not including the new vertex

cannot support the point of minimum norm of a simplex. These regions can therefore

be excluded a priori. Figure 3.4 illustrates an example in which the vertex labelled

as 1 is the latest added to the simplex. In this case the sub-algorithm should ignore

the regions (2, 3), (2) and (3). This requires little coding effort because the Signed

Volumes method is recursive from top to bottom by definition, whereas Johnson’s
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Algorithm 5 GJK algorithm

1: procedure Gilbert-Johnson-Keerthi (P,Q,v0 )
2: k = 0
3: v1 = v0

4: τk = ∅ , Wk = ∅
5: repeat
6: k = k + 1
7: wk = sP (−vk)− sQ(vk);
8: if ‖vk‖2 − vk ·wk ≤ ε2

rel‖vk‖2 then
9: continue
10: τk = {wk} ∪Wk−1 ;
11: [Wk , λ ] = SignedVolumes(τk );
12: vk+1 =

∑
λiyi : yi ∈ Wk, i = 1, ... , |Wk|;

13: until |Wk| = 4 or ‖vk‖2 ≤ εtol max{‖yk‖2 : yk ∈ Wk}
14: return ‖vk‖

algorithm needs data caching to exclude these Voronoi regions.

(1, 2, 3)

(1, 3)(1, 2) (2, 3)

(2)(1) (3)

Figure 3.4: The Signed Volumes method can be tailored to exclude from the recursive
search the tuples disconnected and in grey colour to improve the performance.

Indeed, given an m-simplex, the Signed Volumes method allows to inspect only 2m

Voronoi regions, rather than 2m+1 − 1, without any additional cached data. The little

coding effort required is outlined in the next section.

3.2.3 Implementation

The improved implementation of the GJK procedure proposed in this thesis is shown

in Algorithm 5. This receives in input two arbitrary, and possibly different, representa-

tions of body P and Q , and an initial guess vector v0 . The latter is usually obtained
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from a previous call to the GJK algorithm. The procedure begins by initialising the

iteration counter k , the simple τk and the solution of the support functions wk . The

conditional loop first evaluates the support mapping on the two bodies and stores the

Minkowski difference in wk (line 7). If this is close to the separating vector computed

at the iteration k− 1, the GJK algorithm terminates and returns vk . Notice that this

test is based on a relative tolerance εrel . If the first test is negative, a new vertex is

added to the simplex τk which is then passed to SignedVolumes, the function imple-

menting the Signed Volumes method. This computes vk+1 as convex combination of

barycentric coordinates λi of the smallest subset Wk . For 3D (2D) problems, the last

test verifies if Wk has cardinality equal to four (three), and if the simplex has moved

toward the origin or less than an absolute tolerance εtol .

Algorithm 5 differs from the original implementation and from other published

to date. It omits various pre-processing operations outlined in the original paper by

Gilbert et al (89) because, despite the claim of enhance robustness, those operations

have been found to have little relevance in practise. The implementation presented

here also omits the termination condition wk ∈ Y introduced in (224). This is not

particularly efficient on finely meshed bodies, such as those encountered in computa-

tional mechanics, and is essentially applicable to polytopes only. When compared to

SOLID3, the renown open-source collision detection library (226), Algorithm 5 does

not invoke the Backup procedure and it does not attempt to terminate once this is

be triggered. In fact, SOLID3 (version 3.5.8) terminates once the Backup procedure

is invoked. Although there might be practical reasons behind this choice, the risk is

that the final solution to the distance is coarsely approximated. Finally, Algorithm 5

is simpler than other implementations published to date and yet it aims to provide fast
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and accurate solutions to distance queries.

If implemented in ANSI C, Matlab or similar languages, the only data structure

needed in Algorithm 5 concerns the simplex. To account for the various configurations

of a m-simplex in Rn , a structure simplex is implemented. This includes: the num-

ber of vertices currently in the simplex, n + 1 or fewer barycentric coordinates, the

coordinates of n+ 1 or fewer vertices of of the first body, the coordinates of n+ 1 or

fewer vertices of of the second body, and a list of n+ 1 or fewer points supporting the

point of minimum norm of the simplex. These variables are stored as follows:

struct {

int nvrtx ;

int Wids [ n+1] ;

f loat lambdas [ n+1] ;

f loat YAcrd [ n+1] [ n ] ;

f loat YBcrd [ n+1] [ n ] ;

} s implex ;

(3.9)

The way the indexes Wids are stored in Eq. (3.9) is particularly important and it

is convenient to place the latest vertex added to the subset at the beginning. Keeping

track of the order in which vertices are added to the simplex makes the implementation

simple and efficient. In fact, this trivial bookkeeping allows to easily exclude those

Voronoi regions that cannot support the point of minimum norm of a simplex.

Tailoring the Signed Volumes method for the GJK algorithm requires basically no

coding effort. The three lines which need editing are: line 9 in Algorithm 2, line 12 in

Algorithm 3 and line 11 in Algorithm 4. For these the loops need to run from j = 2,

instead of j = 1; as a result, given an m-simplex, the (m − 1)-facet which does not

include the latest vertex and its child faces are excluded.
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This concludes the description of an efficient and robust implementation of the GJK

algorithm, however further optimisation may be implemented.

Optimisation Whilst the implementation presented thus far excludes certain

Voronoi regions, it may repeat the inspection of some regions. For instance, by looking

at the diagram in Figure 3.4 there are two arrows pointing at the region V(1) indicating

that this region may be inspected twice. This could add a little computational effort,

more pronounced for 3-simplices: as shown in Figure 3.2, the regions (1, 2), (1, 3),

(1, 4) and (1) may be all inspected twice.

These regions are not always inspected twice, but only when two faces of the same

simplex face the origin. This scenario is usually encountered when the bodies are

very close to each other since the simplex adjusts to the boundary of the CSO. For

3D applications however, repeated inspections to the same Voronoi region are not

uncommon and add useless computing operations.

To optimise the implementation, one needs to enrich the data structure in Eq. (3.9) by

addingan int variable notWids[n+1]. This may be seen as a list of fictitious vertices

that cannot support the point of minimum norm, and therefore will be ignored by the

recursive search.

3.3 Intrinsic hierarchy for arbitrary bodies

Lastly, the third novelty introduced in this thesis is an hierarchical search for the

minimum distance between arbitrary bodies. This is specifically designed to limit the

computing effort associated to spatial data structures, and yet to work on all repre-

sentations of solid body. The idea is to carry out the coarse phase without assigning a
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frame of reference, thus using intrinsic variables only, and build spatial data structures

exclusively if the bodies are sufficiently close, i.e. at an arbitrary distance.

3.3.1 Overview

The solution of distance queries between arbitrary bodies presents a number of chal-

lenges: a body may be concave, its morphology can change as the simulation progresses,

and it may be represented as a compound of various primitives. The literature review

presented in Section 2.3 has highlighted that such general scenarios are best handled

by hierarchies of convex bounding volumes.

All bounding volumes employed to date assign a frame of reference, and this is

a mayor limitation that breaks the link between body and space-partitioning scheme.

Basically, even for bodies that are always far apart, their spatial data structure has to be

updated as bodies displace and deform. Moreover, the criteria that trigger the update

of space-partitioning schemes have a significant impact on the overall computing time.

This makes the solution of distance queries complex and expensive, particularly in

dynamic simulations and optimisation problems which require time-marching schemes

or iterative methods for the solution (247).

The method introduced in this section resists the temptation of assigning a frame of

reference and is thought to be the first of its kind in computational mechanics. During

the first (coarse) phase of the hierarchical search, the bounding volumes are defined

by means of intrinsic quantities only. These create a strong coupling between body

and space-partitioning, in fact, the bounding volume automatically updates as a body

moves and deforms. Extrinsic binary trees are used only in a second (fine) phase when

two bodies are found “close enough”.
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The novelty is to build a tree for each couple of bodies only once these are found

at an arbitrary distance. For example, in the specific application of contact search,

the value for this distance is null, so that spatial data structure are only build once

collision is imminent.

Overall, it is expected that this method will reduce the number of operations for

the broad contact search. Further details on the formulation and the implementation

of this method are presented in the following sections.

3.3.2 Theoretical algorithm

The new hierarchical algorithm comprises three distinct phases. It is required that each

phase exploits spatial coherence and operates on any representation of solid bodies, thus

aiming for high performance and versatility. Notice that the term “search” is here used

in its broadest sense, as this method may be used for problems like contact search or

closest neighbour search.

The three major phases are: (i) approximate convex decomposition of bodies,

(ii) broad intrinsic search and (iii) narrow extrinsic search. Their sequence is out-

lined in Figure 3.5. After the narrow phase a number of update criteria are tested to

check whether the body decomposition has to be repeated or not.

The decomposition begins by importing the bodies and subdividing them into

smaller quasi-convex parts called sub-bodies. These are then tested at the broad and

the narrow phases; the former uses the convex hulls to estimate the minimum distance

between a pair of sub-bodies, the latter builds a binary tree for each pair of bodies to

find a list of close neighbours. These steps solve the distance query for a single solution

step. Before proceeding to the next step, a number of update tests are executed. If
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Body definition
and decomposition

Broad intrinsic search

Narrow extrinsic search

Update criteria met?
No

Yes

Figure 3.5: Hierarchical contact search

one of these criteria is met, one or more sub-bodies have to be recomputed; if not, the

solution continues to the next step and the distance query is repeated. Notice that the

body decomposition should not be confused with domain decomposition techniques,

such as (133), herein only the outer surfaces of a body is considered, not its interior.

The convex hull and its support function are evaluated without assigning a frame of

reference, and this is a key advantage of the new broad search over common approaches.

It is expected that this will reduce the overall operations for the broad search. The

validation of this hypothesis is provided in Chapter 4.

Figure 3.6 illustrates with an example the various phases of the hierarchical search.

The example considers two quasi-convex bodies that move toward each other, see Fig-

ure 3.6(a). At each solution step, the minimum distance between their convex hulls is

computed without having to introduce a frame of reference, see Figure 3.6(b). Once

this distance is less than an arbitrary value, a frame of reference is assigned to build

an AABB around each facet of each body. At subsequent solution steps, a binary tree

tests the AABBs for collision. Figure 3.6(d) highlights two faces whose AABBs are
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found in contact and are therefore tested using suitable method for primitive testing.

Notice that all phases can be carried out with this method, regardless of the description

of the bodies.

More details on each phase are given below, whilst Section 3.3.3 presents an imple-

mentation which seamlessly combines all phases.

Approximate convex decomposition The aim of this preliminary phase is

to identify all bodies and to decompose them in approximatively convex sub-bodies.

Distinct bodies are readily identified from the input, e.g. from the connectivity matrix

of a FEM simulation; however, the decomposition is not a trivial operation. Let us

consider a body Ω ⊂ Rn and an arbitrary decomposition of its boundary Γ:

Γ =
⋃
i∈ I

Γi for I = {1, ..., N} (3.10)

Although not uniquely defined, this decomposition is exact in the sense that it provides

a finite set of sub-boundaries whose union is Γ itself.

In order to uniquely specify the decomposition in Eq. (3.10) a criterion must be de-

fined. Ideally, this should enable a quick decomposition but also a quick evaluation

of d(Γi,Γj), for all i, j ∈ I . Furthermore, if each sub-body is nearly convex, the

evaluation of this distance for i = j may be avoided altogether. This would sim-

plify tremendously the broad search, however a measure of the convexity of a body

is necessary. The convexity C(Γ) of a body with boundary Γ may be measured as

follows:

C(Γ) = min
x∈Γ
‖x− P (x)‖ (3.11)

where P (x) is the projection of a point x on the boundary of conv(Ω) with respect

to the half-line with origin x and directional normal to Γ at x . The decomposition is
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(a)

(b)

(c)

(d)

Figure 3.6: Distance queries between two arbitrary bodies (a) are computed hierarchi-
cally in different phases. Firstly, the distance between their convex hulls is computed
(b). The second phase involves the generation of bounding volumes around the faces
(c), for the sake of clarity not all AABBs are illustrated. Finally, the distance between
faces is computed (d).
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Γ

s

P (s)

(a)

Γ1

s

P (s)

(b)

Γ2

C(Γ2) = 0

(c)

Figure 3.7: Given a concave body Ω with frontier Γ (a), this may be decomposed into
two sub-bodies, whose boundaries have convexity C(Γ1) and C(Γ2) less or equal than
an arbitrary positive value. The approximatively convex sub-bodies resulting from
the decomposition are shown in (b) and (c), and their convexity is represented as the
magnitude of a vector ‖s−P (s)‖ , where s lays on the frontier of a sub-body and P (s)
is its projection on the convex-hull of the sub-body.

thus required to provide, for an arbitrary body Ω, a set of sub-bodies with convexity

at the most εc ; namely,

Γ ≈
N⋃
j=1

conv Γi with C(Γi) ≤ εc. (3.12)

The convex decomposition is illustrated with an example in Figure 3.7. A concave

body Ω has convexity C(Γ), whilst for a certain decomposition each sub-boundary

has a convexity much smaller: C(Γ1) = ‖s1 − P (s1)‖ and C(Γ2) = 0.

The method described in (148) provides a decomposition of the kind illustrated in

Figure 3.7, albeit this has never been applied in computational mechanics before. The

method was originally designed for triangular meshes only, but it can be readily ex-

tended to other representations of solids (see Section 4.7 for the particular case of

NURBS surfaces). An example of decomposed triangular mesh surface is shown in

Figure 3.8; this includes the original model, its convex hull, and the convex hulls of

the resulting sub-bodies. An example of decomposed trivariate solid NURBS is shown

in Figure 3.9, this includes the original model, its convex hull, and the convex hulls of

the resulting sub-bodies.
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As shown earlier in Figure 3.5, this phase is invoked once at pre-processing and is carried

out without assigning a frame of reference. Only occasionally, at runtime, a sub-body

that deforms significantly, or changes its morphology, has to be re-decomposed.

Γ

(a)

conv Γ

(b)

conv Γi

(c)

Figure 3.8: Hand model described by polygonal mesh (a), its convex hull (b), and an
approximated convex decomposition represented by the convex hulls of the resulting
sub-bodies (c).

Intrinsic broad search This phase endeavours to provide a list of sub-bodies that

are within a distance not greater than εd . Since this is just a coarse (broad) level of

search an approximate, but conservative, answer is sought. The level of approximation

depends on the choice of bounding volume for the sub-body Γi and on the specific

application. For instance, in contact search εd = 0 and any bounding volume reviewed

in Chapter 2 may be used.

The new method uses, as shown in Figure 3.6(b), the convex hulls conv Γi , for i ∈

I = {1, ..., N} , as bounding volume of all sub-bodies. This choice brings several

advantages:
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Γ

(a)

conv Γ

(b)

conv Γi

(c)

Figure 3.9: Turbine fan blade described by trivariate NURBS (a), the convex hull of
its control points (b), and an approximated convex decomposition represented by the
convex hulls of the resulting sub-bodies (c).

1. There is no need to assign a frame of reference to compute the minimum distance

d(conv Γi, conv Γj) for i, j ∈ I .

2. Convex hulls are, by definition, the tightest bounding volumes. Namely, for an

arbitrary boundary Γ, with convexity C(Γ) ≤ εc , the convex hull conv Γ encloses

the smallest volume than any other bounding volume.

3. The support function on conv Γ may be evaluated for any representation of Γ and

without computing explicitly its convex hull. See Chapter 2 for meshes, quadrics

or compounds of these, and Chapter 4 for the particular case of NURBS.

4. The design of multi-level broad searches is straightforward since conv(Γi) ⊂

conv(Γ) for i ∈ I . An illustration of this hierarchical subdivision is shown

by the examples in Figures 3.8 and 3.9, where the body, its convex hull and an

approximate decomposition for polygons and NURBS are depicted.
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The Euclidean distance between convex hulls of sub-bodies is the intrinsic variable

that governs the novel broad search. This is a good, and conservative, approximation

because the maximal separation between convex sets is equal to the smallest distance

between them (52).

However, computing the distance for all sub-body pairs is computationally expensive.

These are (N2−N)/2 distance queries which populate the upper triangle of the matrix:

D =



0 d1,2 · · · d1,N

0
. . .

...

0 dN−1,N

0 0


(3.13)

where di,j is short for d(conv Γi, conv Γj).

The new method exploits spatial coherence to avoid recomputing at each solution steps

all values di,j : it is assumed that the distance between two bodies varies only marginally

in subsequent time-steps. This suggests that di,j may be approximated by a function

d̃i,j whose evaluation is sufficiently cheap to be evaluated at each solution steps for all

values of matrix D .

The function d̃i,j is defined so that: (i) d̃ ti,j ≤ d ti,j holds for all time-steps t , and (ii) it

can be updated incrementally with little computational effort. The following definition

meets these requirements:

d̃ t+1
i,j = d̃ ti,j −

(
max
si∈Γi

‖si‖+ max
sj∈Γj

‖sj‖
)

(3.14)

where si and sj are the displacements of two points, respectively on Γi and Γj , accumu-

lated in a solution step. Effectively an approximation of the accumulated displacement,

d̃i,j may evaluated very efficiently. At time t = 0 is taken d̃ 0
i,j = d 0

i,j . Other definitions

different from Eq. (3.14) may be used, however this is preferred for simplicity and suit-
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ability to dynamic simulations.

It is assumed that this logic will reduce significantly the of number calls to distance

queries, and Chapter 4 presents a series of validation tests for this hypothesis.

Once d̃i,j ≤ εd , a distance algorithm is invoked, to recompute di,j , for the single pair

comprising Γi and Γj only. If di,j ≤ εd , the pair is passed to the narrow search that is

described below.

Extrinsic narrow search In this phase, the distance queries are carried out at

the facet level. Given a list of convex or quasi-convex body-pairs close to each other, the

narrow search creates a new list of close facet-pairs. Recall that a facet is, for all body

representations, the image of an outer portion of parametric domain. The procedure

described here is rooted in this definition and it is designed to equally process meshes,

NURBS, quadrics and compounds of these.

Unlike other methods, herein each body-pair is processed individually. For the example

illustrated in Figure 3.6(c), a number of AABBs is built and sorted in a binary tree;

these are built, traversed and tested individually for each pair passed from broad to

narrow search. Conventional methods do not consider a single pair of sub-bodies, but

build a single tree for all bodies in the domain. Instead, the new approach generates a

larger number of trees, but of smaller size.

The choice of using many binary trees is based on the assumption that it is more ef-

ficient to process smaller trees than a large one. Multiple binary trees require more

memory, but they are more likely to remain well-balanced as bodies move and deform.

Furthermore, they are only built and traversed on demand from the broad search. This

method needs more operations at runtime for building the trees, but less for traversing
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and, more importantly, rebalancing them. The idea is not to reinvent bounding vol-

umes and space-partitioning schemes, but to make an innovative use of them.

The underlying assumption made about the performance of the multiple trees may

not hold for computer graphics and other applications, but will be verified for com-

putational mechanics in Chapter 4 and Chapter 5. The verification tests will concern

dynamic simulations, in which distance queries are used to perform contact search.

Let us now present how each facet may be bounded. This presentation employs AABBs

and ADTs because widely employed, but the methodology suits any other data struc-

ture reviewed from the literature in Chapter 2, e.g. object-oriented bounding-boxes

and BSP tree. The particular context of dynamic simulations is considered, in which

bodies move and each AABB encloses a facet and its buffer zone. The buffer zone, or

Verlet distance, is a fictitious layer that often takes into account: the size, the velocity

and possibly the convexity of a facet. Herein, the buffer zone zb is defined as follows:

zb = εbuffer + vmax ∆t (3.15)

where εbuffer is an arbitrary coefficient in the order of the squared-root of the machine

precision, vmax is the maximum nodal velocity of a facet and ∆t is time-step incre-

ment. Different constructions of AABBs associated to zb are illustrated in Figure 3.10.

The simplest is in Figure 3.10(a), which also results in the largest size. The smallest

AABB is built by taking a normal offset to the facet, as shown in Figure 3.10(b). The

configuration in Figure 3.10(c), which takes into account the orientation of the facet,

is used throughout this work.

The rest of this section presents flowcharts that describe the processes of: ap-

proximate decomposition, broad and narrow searches. These are the major modules
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Γ
zb

zb

AABB

(a)

Γ

zb

AABB

(b)

Γ

zb

zb

AABB

(c)

Figure 3.10: Different types of AABB constructions around a 2D flat facet based on
the buffer zone value zb : (a) expands the box along the axis directions, (b) projects
the buffer zone outside the facet, and (c) accounts for normal and tangential direction.

in Figure 3.5 and will be here closely inspected. Firstly, the decomposition of sub-

bodies is shown in Figure 3.11. This is a linear sequence of steps that starts by

reading the input to define the bodies, decomposes them, and measures the distance

d(conv Γi, conv Γj) = di,j between a pair of resulting sub-bodies. The exact value di,j

is then used to initialise d̃i,j , which will be used at runtime to estimate the distance

between the convex hulls of the sub-bodies. Secondly, the intrinsic broad search is

shown in Figure 3.12. This is invoked at runtime and begins by computing a new value

for d̃i,j . If this is greater than εd , the pair Γi , Γj is discarded from the list of potential

contact pairs; whilst if equal or smaller than εd , the exact value for di,j is recomputed

and tested to establish whether the sub-bodies should be passed to the narrow phase

or not. Finally, the extrinsic narrow search is shown in Figure 3.13. This is essentially

a standard search based on AABBs and a binary tree. After these phases are com-

pleted, one or more criteria are tested to check if one of the sub-bodies has deformed

to the point there its convexity exceeded the threshold valued εc , and if yes, the body

will be re-decomposed. Notice that at runtime this decomposition is triggered only

occasionally for a specific body, and not for all (N2 −N)/2 pairs.
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Appr. convex decom.

Define bodies

Decompose bodies
as per Eq. (3.10)

Compute di,j

Approximate di,j with d̃i,j

Continue to
broad search

Figure 3.11: Workflow for the approximate convex decomposition module. A body
Ω is decomposed into sub-bodies. The minimum distance between each sub-body is
stored in the upper triangle of a matrix whose elements are di,j . Afterwards, to save
computing time, the distance is approximated by d̃i,j .

As mentioned earlier, this novel method makes use of existing routines in such a way

to reduce the computing effort of space-partitioning. This is only possible because the

broad search is conducted intrinsically, that is, without assigning a frame of reference

to solve distance queries. The next section presents how to implement and combine

the three major phases described thus far into a hierarchical framework.

3.3.3 Implementation

This section describes the data structures, algorithms and implementation details nec-

essary to adopt the novel hierarchical search. For the sake of clarity, the presentation is

tailored for solving contact detection problems using particular algorithms selected by

the author. The methodology, however, is general and applicable to other algorithms.

The most important data structures to be stored concerns the sub-bodies and pairs
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Intrinsic broad phase

Update d̃(Γi,Γj)
from Eq. (3.14)

d̃(Γi,Γj) ≤ εd?

Recompute d(Γi,Γj)

d(Γi,Γj) ≤ εd?

Update d(Γi,Γj) = d̃(Γi,Γj)

Continue to
next solution

Continue to
narrow search

Yes

No

Yes
No

Figure 3.12: Workflow for the intrinsic broad search module. The approximate distance
d̃(Γi,Γj) between the i -th and j -th body is tested at each iteration against an arbitrary
value εd . Only if smaller the exact distance d(Γi,Γj) is recomputed.

of these. A sub-body is stored in the following structure:

struct {

int bodyid ;

int parent ;

int type ;

int updatef ;

int c o n t a c t f ;

double z b u f f e r ;

double convex i ty ;

double mdisp ;

} subody ;

(3.16)
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Narrow contact phase

ADT need build/update?

Build/update AABBs

Build/update ADT

Traverse ADT

Create/update
list contact pairs

Run facet-to-facet test

Continue to
next solution

No

Yes

Figure 3.13: The workflow for the extrinsic narrow search module is linear and very
similar to the one of existing methods. The test is repeated each time-step for all facets
selected during the broad search.

This includes the unique ID, or label, of the sub-body and of its parent body. It is also

necessary to store the type of description of the body; notice that each type presented

in Chapter 2, needs more specific fields. For example, polygonal meshes are described

by means of point coordinates. Two flags, updatef and contactf , are used to trigger

the space-partitioning update and to track whether the sub-body is in contact or not

with the other bodies. Finally, the values of zb , εc and maxsi∈Γ ‖si‖ are stored.
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The information about a pair of sub-bodies are stored in the following structure:

struct {

int master id ;

int s l a v e i d ;

int dd ;

int ncntact s ;

int mcntacts ;

int l c n t a c t s [ mcntacts ] ;

} bdpair ;

(3.17)

This includes the ID’s of the sub-bodies in the pair and the approximated squared

distance between them (dd). The number and the list of overlapping AABBs, or

equivalent bounding volumes, must be tracked for the narrow search; these are stored

in ncntacts and lcntacts respectively. The maximum number of overlapping AABBs

ncntacts is stored for memory management purpose.

The algorithms used herein for the hierarchical search have been taken from the

literature, and most of them did not require any modification. For the approximated

convex decomposition and the binary tree functionality, this work relies on third-party

implementations. Recent publications in the field of computer graphics provide efficient

algorithms for decomposition of polygonal models (62, 86, 136, 148). The algorithm

described in (148) is efficient and simple to implement and is therefore used throughout

this section for decomposing bodies. This is coupled with the ADT (25) for the space-

partitioning of AABBs, the GJK algorithm presented in Section 3.2 to compute the

distance di,j , and the Signed Volumes method.

The pseudo-code for the contact search is presented in Algorithm 6. This begins

by searching for the maximum displacement experienced, in a single solution step, by
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all sub-bodies. This value is then subtracted to the previously computed value of d̃i,j .

If this is greater than zero, the algorithm proceeds to the next pair of sub-bodies,

alternatively it carries out the broad and narrow search as detailed in Figures 3.12

and 3.13.

Algorithm 6 Hierarchical contact search

1: for i = 1, ..., N do
2: subbody = Γi
3: for all Nodes j in Γi do
4: if smax < sj then
5: smax = sj . Find maximum displacement
6: subbody->mdisp = smax
7: subbody->updatef = 1

8: for i = 1, ..., N − 1 do
9: for j = i+ 1, ..., N do

10: subbodyi = Γi , subbodyj = Γj
11: d̃i,j− = (subbodyi->mdisp + subbodyj->mdisp)
12: if d̃i,j > 0 then
13: continue . Carry on solution
14: else
15: if GJK is active then
16: d̃i,j = GJK( Γi,Γj ) . Broad search

17: if d̃i,j ≤ εtoll then . Narrow search
18: Deactivate GJK
19: if Bodies were in contact before then
20: bdpair->updatef = 0

21: else
22: bdpair->updatef = 1

23: if subbodyi->updatef OR

subbodyj->updatef OR

bdpair->updatef do
24: Invoke UpdateAABBs

25: Invoke UpdateADT

26: Invoke TraverseADT

27: if Number of colliding AABB = 0 then
28: Activate GJK
29: else
30: continue . Carry on solution

A characteristic aspect of contact detection problems is that bodies may contact

and/or overlap for prolonged periods of time. This may be a consequence of the contact
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formulation, e.g. penalty method, or the particular application, e.g. large sliding, but

the consequence is an increased computational cost of the contact detection. This

mechanism would trigger unsustainable computational costs due to the broad search.

When two bodies are in contact, following from Eq. (3.14), we have d̃i,j ≤ di,j = 0 and

therefore this procedure would trigger the re-computation of di,j at each time-step for

all contacting pairs of sub-bodies.

Algorithm 6 avoids this extra costs by activating or deactivating the broad search.

The broad search is deactivated if the distance between the convex hulls of Γi and Γj

is null, and is activated if there are no AABBs in contact. The test on the number

of colliding bounding boxes is line 19 does exactly this. As the simulation advances,

di,j may become null and hence trigger the narrow search. At this moment the broad

search is deactivated and the facets of Γi will be tested for collision against the facets

of Γj by means of the ADT tree and AABBs. Namely, all subsequent time-steps will

assume that conv Γi and conv Γj collide and the distance algorithm will not be invoked

again. Only when the number of overlapping AABBs is zero the broad search will be

reactivated.

3.4 Concluding remarks

Three new distance algorithms have been presented in this chapter: (i) the Signed

Volumes method: a new recursive procedure for point–simplex distance queries; (ii) an

improved version of the Gilbert-Johnson-Keerthi (GJK) algorithm for faster and more

accurate distance queries between convex bodies; and, (iii) an innovative hierarchy of

bounding volumes for arbitrary representations of concave objects. They are extremely
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versatile and make use of spatial coherence to minimise the computing time. All

common representations of solid bodies may be treated and these algorithms can be

combined into a hierarchical search to tackle complex distance queries.

The Signed Volumes method solves point–simplex distance queries robustly and

accurately. The projection of the origin onto the affine hull of a hyperplane is the most

critical step, but it is carried out in such a way that the overall robustness cannot be

affected.

The improved GJK algorithm employs the Signed Volumes method as distance

sub-algorithm. Combined together, these provided a robust and efficient procedure for

measuring the distance between any pair of convex bodies.

Finally, an innovative hierarchical framework has been formulated on the assump-

tion that a large number of small binary trees may be build and traversed more quickly

than a unique tree. Before any space-partitioning data is built, a broad search is car-

ried out without assigning a frame of reference. This is only based on the approximate

displacement of each body and on the minimum distance between two bodies. This

removes, in the broad phase, the troublesome task of updating binary trees and con-

sequently all the costs associated to it.
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Applicability, verification &

performance tests

This chapter verifies robustness and stability of the routines implementing the algo-

rithms presented in Chapter 3. Firstly, the Signed Volumes method is illustrated and

subjected to a number of tests for DEM and FEM contact analysis. Afterwards, the

GJK algorithm and the novel hierarchical search are combined to solve multi-body

problems. The results are compared against reference solutions. Together with an

analysis of the theoretical costs, these validate the hypothesis underpinning the hierar-

chical search. A simple example is also presented to highlight the applicability of the

routines to the treatment of (concave) NURBS curves and surfaces. Finally, an exten-

sive comparison between the original and the improved GJK algorithm is presented.
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(a) (b) (c)

Figure 4.1: Rigid sphere impacting a flat surface described by elements with triangular
facet.

4.1 Example of sphere–triangle contact detection

This section presents with an example how the Signed Volumes method (Section 3.1)

solves a distance query. The aim is to give a step-by-step explanation of the recursive

logic behind SignedVolumes, the routine that implements the Signed Volumes method.

Particular attention is paid to geometrical interpretation of the sub-routines S2D and

S1D introduced in Chapter 3.

Let us consider the generic scenario presented in Figure 4.1, where a sphere impacts

a flat surface represented by triangles. Figure 4.1(a) illustrates a particular time-step of

a dynamic simulation in which the surface could either be rigid or deformable, and the

triangles could be shell elements or outer facets of tetrahedral elements. For simplicity,

only the primitives highlighted in Figure 4.1(b) are tested for collision. Assuming that

the surface is at rest and the sphere moves toward it, there will be a time-step in which

the primitives have their AABBs overlapping; this is the first time-step that invokes

SignedVolumes. The objective is therefore to establish whether the sphere and the

triangle in Figure 4.1(c) are in contact or not. In what follows, a pair of primitives

tested by a contact search algorithm is simply referred as contact pair.

The sphere–triangle test computes distance between the primitives, if this is less
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Table 4.1: Coordinates of the points in Figure 4.2(a)

Point x-coordinate y-coordinate z-coordinate

s1 0.45 0.00 −0.60
s2 −0.55 −0.75 −1.55
s3 −0.55 0.75 −1.55

(a) (b)

Figure 4.2: Example of sphere-triangle contact test: original (a) and equivalent problem
(b).

than zero the contact pair overlaps, otherwise the test is negative. This example

considers the primitives illustrated in Figure 4.2(a). The sphere is centred at the origin

Õ and has diameter φ = 1; the triangle has coordinates of s1, s2, s3 given in Table 4.1.

The SignedVolumes is used to solve the equivalent problem shown in Figure 4.2(b);

it computes the minimum distance between conv({s1, s2, s3}) and the origin Õ . Since

the sphere is symmetric, it is easy to show that the original contact–pair collides only

if this is smaller than φ .

The first function invoked within SignedVolumes is S2D, which begins by projecting

the 2-simplex τ = {s1, s2, s3} on the three Cartesian planes to compute the area of
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(a) (b)

Figure 4.3: Given a point Õ and a triangle {s1, s2, s3} (a), these are projected from
3D to 2D space onto a Cartesian plane.

three triangles. A matrix M may be defined so that:

det M =

∣∣∣∣∣∣∣∣∣∣∣

sx1 sx2 sx3 0

sy1 sy2 sy3 0

sz1 sz2 sz3 0

1 1 1 1

∣∣∣∣∣∣∣∣∣∣∣
= C1,4 + C2,4 + C3,4 + C4,4. (4.1)

The first three cofactors in Eq. (4.1) correspond to the areas of the triangles projected

on yz -plane, xz-plane and xy-plane, respectively. The minor whose absolute value is

max {|C1,4|, |C2,4|, |C3,4|} corresponds to the triangle with the largest area.

Figure 4.3(a) illustrates all projections of τ . From the coordinates in Table 4.1 and

Eq. (4.1) it can be found that the triangle projected on the yz -plane is the largest one.

Furthermore, it should be noted that the area projected onto the xz -plane is a needle

of zero area, namely: |C2,4| = 0.

The plane the largest triangle lays on is shown in Figure 4.3(b). The projection of pO

onto the yz -plane is simply obtained by discarding the x -coordinate of pO and all points

in τ . This yields to four new points s′1 , s′2 , s′3 and p′
Õ

illustrated in Figure 4.3(b).

Following the projection step, three 2D fictitious simplices are defined and their
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areas compared against C2,4 . The comparison is carried out with CompareSigns, the

routine that implements the function defined in Eq. (3.4). Whilst C2,4 is known from

previous steps, the areas of the fictitious simplices in Figure 4.4 must be computed.

From Eq. (3.3) the area of the first, second and third fictitious simplex have sign equal

to the following determinants:∣∣∣∣∣∣∣∣
sy1 sy2 pyO

sz1 sz2 pzO

1 1 1

∣∣∣∣∣∣∣∣ ,
∣∣∣∣∣∣∣∣
pyO sy2 sy3

pzO sz2 sz3

1 1 1

∣∣∣∣∣∣∣∣ and

∣∣∣∣∣∣∣∣
sy1 pyO sy3

sz1 pzO sz3

1 1 1

∣∣∣∣∣∣∣∣ , (4.2)

respectively.

(a) (b) (c)

Figure 4.4: Illustration of the three fictitious simplices obtained by replacing pÕ to s3

(a), s1 (b) and s2 (c).

For this example, the first and the third determinants in Eq. (4.2) have the sign

equal to signC2,4 . As can be seen from Figure 4.4, this means that the subset {s2, s3}

does not support the point of τ closest to pO . The support is sought by invoking S1D

independently for {s1, s2} and {s1, s3} .

The routine S1D essentially repeats all steps of S2D for the 1-simplices {s1, s2} and

{s1, s3} . It begins by projecting O′ onto the affine hull of a simplex, and eventually

descends from R3 to R1 by projecting all points and O′ onto the “safest” axis of the

Cartesian coordinate system. The result of this procedure is illustrated in Figure 4.5

for {s1, s2} only, but SignedVolumes repeats these steps for {s1, s3} .
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(a) (b)

Figure 4.5: Projection of a fictitious simplex from 2D (a) to a 1D Cartesian axis (b).

Finally, the original distance query is solved: both calls to S1D return s1 as the

closet point of the simplex to O′ , and therefore the SignedVolumes terminates.

4.2 Remarks on numerical robustness

A crucial part of the Signed Volumes algorithm is the computation of det M , its sign

in particular. This section studies the effect of rounding error for degenerate simplices,

i.e. when the points of a simplex are affinely dependent.

The limited accuracy of floating-point arithmetic makes the evaluation of the de-

terminant of small-rank matrices a difficult operation. Modern processor units, CPUs

and GPUs, commonly use three levels of precision to represent floating-point numbers:

half-precision (16 bits), single precision (32 bits) and double precision (64 bits). These

represent a real number by:

±m× βe (4.3)

where the mantissa (or significand) ±m has length p and the signed integer exponent e
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is usually represented in binary β = 2 base by q digits. The widely accepted IEEE 754

standard sets p = 24 for single-precision and p = 53 for double-precision and defines

any exceptions which cannot be represented by the format in Eq. (4.3).

The two types of error encountered in floating-point arithmetic are absolute and

relative. The discrepancy between an exact representation x and its floating-point

approximation x̃ is the machine epsilon ε = 1
2
β1−p . This is an absolute bound to the

accuracy.

The relative error occurs when evaluating expressions, and this can be several order

of magnitude larger than ε . Let us consider two arithmetic values x1−x̃1
x1

= η1 and

x2−x̃2
x2

= η2 . The relative error resulting from the difference γ = η1 − η2 can be several

order of magnitude larger than ε . This is known as cancellation and its effect can be

catastrophic for projection point problems such as those presented in (26, 63, 104, 156,

168, 173, 256). As already mentioned in Chapter 2, cancellation is overlook in all these

previous studies.

Computing the determinant of a matrix is an operation extremely prune to cancel-

lation error. A solution is to evaluate the determinant using a formulation that is less

likely to trigger cancellation. For example, the determinant of 3-by-3 matrix may be

written as: ∣∣∣∣∣∣∣∣
a b c

d e f

g h i

∣∣∣∣∣∣∣∣ = a(ei− fh)− b(di− fg) + c(dh− eg) (4.4a)

= aei+ bfg + cdh− ceg − bdi− afh. (4.4b)

Although computationally more efficient, Eq. (4.4a) is more prune to cancellation than

Eq. (4.4b), thus the latter should be preferred.
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Let us investigate the behaviour of SignedVolumes when using double-precision

when dealing with a degenerate simplex. Consider the 3-simplex τ = {s1, s2, s3, s4}

depicted in Figure 4.6. The aim is to find the set W supporting the point of minimum

norm

ν (τ) =


|W |∑
i=1

λisi : s ∈ τ , i ∈ W , λ > 0 ,

|W |∑
i=1

λi = 1

 . (4.5)

The coordinates of all vertices si are also included in Figure 4.6.

Point x-coordinate y-coordinate z-coordinate

s1 −20.713282046795065 0.00 −31.557752817397152
s2 −6.3505362624669246 19.715748586578577 −31.557752817397152
s3 20.713255776709875 −0.032989069061845351 −31.557752817397152
s4 −20.713282046795065 0.00 −31.557752817397152

Figure 4.6: Example of degenerate 3-simplex.

By following the procedure presented in Chapter 3, the reader can verify that by

solving Eq. (4.4b) with double-precision, µ(τ) = −3.637 978 807 091 713× 10−12 . This

triggers, from CompareSigns, the search in three facets of τ with S2D, which is invoked

independently to test {s1, s2, s3}, {s1, s2, s4} and {s1, s3, s4} . The three calls to S2D

guarantee that the correct answer is found, but at an extra computing effort.

The cancellation error yields to extra search operations which may be easily visu-

alised tracking how SignedVolumes descends the Hasse diagram of a 3-simplex. Fig-
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ure 4.7 shows all Voronoi regions of τ and highlights the solution V1,2,3 in green. An

arrow is drawn every time one of the functions S3D, S2D or S1D is invoked. Apart from

the arrow linking V1,2,3,4 with V1,2,3 , all the others report unnecessary search operations

that should be avoided.

This example has shown that computing the determinant with Eq. (4.4b) is not

sufficient to prevent cancellation from compromising the Signed Volumes method. This

problem is well-known in the literature and is also known to affect other applications

in computational mechanics, such as mesh generation (77) and X-FEM (216).

A more robust alternative for computing the determinants is to design a software

library that enables arbitrary precision. Exact arithmetic (76), multi-precision arith-

metic (75) and adaptive floating-point arithmetic (183, 209) are the most successful

solutions published to date. Exact arithmetic libraries can operate on either integers

or doubles numbers, but these have high memory and processing costs. Multi-precision

libraries achieve arbitrary precision by storing numbers in a multiple-digit format (75);

the major drawback to this solution is the portability of such libraries. A fast and

flexible solution is the adaptive precision floating-point library for geometric opera-

tions presented in (209). This substitutes the multiple-digit format with a multiple-

component format which stores numbers as a sum of ordinary floating-point. Arbitrary

precision is achieved by adding more terms a posteriori only, if a particular arithmetic

operation requires it.

Adaptive floating-point arithmetic allows to compute sign det M exactly and, conse-

quently, it increases the effectiveness of the search operation dictated by CompareSignes.

Let us verify this by repeating test in Figure 4.6 with the geometrical predicates pre-

sented in (209).
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1, 2, 3, 4

1, 2, 4 1, 2, 3 1, 3, 42, 3, 4

(1, 3)(1, 2)(1, 4) (2, 3)(2, 4) (3, 4)

(1) (2) (3) (4)

Figure 4.7: Hasse diagram and search path of the SignedVolumes algorithm showing
the effect of cancellation. Without adaptive-floating point arithmetic the algorithm
does not select the shortest path to find the exact solution which is highlighted in
green.

Whilst with double-precision the volume of τ was negative, with adaptive arith-

metic this is exactly null, i.e. µ(τ) = 0. Furthermore, only one of the minors computed

in S3D is non-null. For the current example, the only arrow drawn on the Hasse diagram

links V1,2,3,4 with V1,2,3 , demonstrating that adaptive arithmetic drastically reduces the

number of operations when SignedVolumes deals with degenerate simplices.

Numerical experiments on degenerate simplices show that the total CPU time of

SignedVolumes is reduced with adaptive floating-point arithmetic. However, for sim-
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plices with affinely independent points, standard double-precision arithmetic is 10% to

15% faster. From this point of view, the contribute of adaptive floating-point arithmetic

is therefore negligible. There are applications however in which the higher accuracy of

adaptive arithmetic brings tangible benefits, one application is discussed in Chapter 6.

Overall, the test presented in this section investigated the effect of cancellation of the

routine which implements the Signed Volumes method. It has been shown that adaptive

floating-point arithmetic is beneficial for degenerate simplices; although cancellation

on double-precision arithmetic does not affect significantly the final solution, it does

make the computation more expensive by increasing the number of operations. As

rule of thumb, the use of adaptive arithmetic in SignedVolumes is recommend for

applications whose results is heavily influenced by the outcome of the distance query,

e.g. optimisation problems.

4.3 Simple contact benchmarks for rigid and de-

formable elements

This section presents three verification tests for discrete element method (DEM) and

finite element method (FEM). These are a selection of a larger benchmarking suite

created with the aim of verifying the correct implementation of the algorithms described

in Chapter 3. The benchmarks focus on narrow contact search and resolution of single-

element contact pairs. All elements have the same material properties: Young modulus

E = 2.1× 108 MPa and density ρ = 7.85× 103 kg m−3 . The material is considered

isotropic linear elastic; furthermore, for simplicity, the contact is modelled by penalty

formulation and friction is ignored.
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(a) t = 0.0 s (b) t = 0.9 s (c) t = 1.8 s

Figure 4.8: Solution of contact benchmark between two deformable tetrahedral finite
elements.

4.3.1 Test two deformable tetrahedral elements

This test involves two tetrahedral finite elements under gravitational load. An element

has its base supported in the vertical direction, the other is free to fall and initially at

rest. This benchmark aims to verify the correct implementation of contact routines for

triangular facets.

The solution is shown in Figure 4.8 at three time-steps: t = 0.0 s , t = 0.9 s

and t = 1.8 s . Because of the ideal contact conditions, it is expected that the falling

element, after collision, bounces back to its original position. This requires a robust

implementation of the geometrical routines from which the contact forces is calculated.

The small overlap visible in Figure 4.8(b), due to the penalty formulation, persists

for several time-steps; should the resultant contact force be asymmetric for any time-

step, the top tetrahedron will not bounce back vertically. Notice that the resultant

contact force is the sum of the contributes from six contact pairs.

For verification purpose, three independent quantities are monitored during the

simulation: spatial coordinates, kinetic energy and ground reaction force. The vertical

coordinate of the vertex at the bottom of the falling tetrahedron has an almost perfect
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(a) (b) (c)

Figure 4.9: History of node coordinate (a), kinetic energy (b) and contact reaction
force (c) for contact benchmark between tetrahedrons in Figure 4.8.

symmetrical history, as shown in Figure 4.9(a). The initial and final position along the

z -axis of this node are within a small tolerance. Figure 4.9(b) shows the history of the

kinetic energy in the system. Like before, the curve exhibits nearly perfect symmetry

before, after and during collision. Finally, the resultant of vertical forces acting on

fixed tetrahedron are reported in Figure 4.9(c).

The consistency of the results in Figure 4.8 gives some confidence about the contact

detection and resolution algorithms for tetrahedral elements. More benchmarks, omit-

ted from this thesis, were carried out to verify other scenarios, such as edge–to–edge,

face–to–face and edge–to–face. They have all returned consisted results, and therefore

it can be concluded that the implementation is accurate and robust.

4.3.2 Test rigid sphere and deformable tetrahedron

The second test considers a rigid sphere moving toward a grounded tetrahedron with

velocity v0 . Gravity is ignored and only the nodes at the bottom of the tetrahedron

are constrained. The aim is to validate the implementation of the routines for sphere–

triangle tests.
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(a) t = 0.0 s (b) t = 5× 10−1 s (c) t = 1.0 s

Figure 4.10: Sphere-tetrahedron contact test.

Figure 4.11: Horizontal and vertical displacement of rigid sphere.

The solution is shown in Figure 4.10 at three time-steps: t = 0.0 s , t = 0.5 s and

t = 1.0 s . Because the impact occurs on a face inclined at 45° , it is expected that the

sphere converts, after collision, its motion from horizontal to vertical. This requires

a robust implementation of the geometrical routines from which the contact forces is

calculated.

The displacement history of the sphere is shown in Figure 4.11. The graph shows

that, after collision, the sphere retains some of its initial horizontal displacement (the

horizontal resultant accounts for the contribution from ux and uy components), this is

because the tetrahedron element is deformable. By repeating this test with spheres of

smaller size, it was found that horizontal displacement tends to remain constant after
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l1 l2Gap

v1 = 10m s−1 v2 = 0

Figure 4.12: Impact of two elastic bars.

collision.

Like in Section 4.3.1, this benchmark is only a particular scenario of the many tested

for validating the routines. Other tests included spheres of various size impacting an

edge or a vertex of the tetrahedron and, since all tests returned consistent results, it

can be concluded that the implementation is accurate and robust.

4.3.3 Test two deformable hexahedral elements

One of the most technically important problems in impact analysis is the longitudinal

collision between collinear rods. This is usually studied for analytical and experimen-

tal applications, but here is used to investigate the effect of the penalty factor ε on

numerical analysis of impacts. See (247) for more details on the contact formulation.

Let us consider two rods illustrated in Figure 4.12. Their displacement, respectively

u1 and u2 , may be described by a one-dimensional travelling stress wave:

EA
∂2u1

∂x2
= −ρA∂

2u1

∂t2
and EA

∂2u2

∂x2
= −ρA∂

2u2

∂t2
. (4.6)

The rods have identical material ( density ρ and Young modulus E ) and area A ,

but one is initially at rest, the other travels at velocity v1 . Eq. (4.6) requires the

solution of a boundary value problem. The well-known analytical solution, derived by

d’Alembert, superimposes two stress waves in each rod. A wave travels with velocity
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c =
√

E
ρ

, the other −c . Typically this is written as u1(x, t) = f1(x − ct) + g1(x + ct)

for the fist rod, and u2(x, t) = f2(x − ct) + g2(x + ct) for the second. The solution

is illustrated in Figure 4.13. Initially, both bars are stress free (Figure 4.13(a)). The

bars do not separate when v1 6= v2 at the interface (Figure 4.13(b)), but when σ >

0 at the interface (Figure 4.12(c)). This is because the bars remain in equilibrium

while colliding. After collision the left-hand bar is at rest, whilst the other departs

maintaining some oscillations (Figure 4.12(d)).

From the solution of Eq. (4.6), the time of impact timpact may be computed and is

here compared against a FEM simulation. Each bar is modelled by a single hexahedral

FEM so that the geometry reflects Figure 4.12. Due to the penalty formulation the

bars overlap and the gap is negative. The solver employs a penalty factor ε to apply

contains and this heavily influences timpact . On the one hand, for low values of ε the

bars may never separate, on the other hand, for excessive values of ε they may bounce

before moving apart. Therefore, ε needs to be calibrated.

For length l1 = 1m , the analytical solution for the impact time is timpact = 0.0245 s,

however, only a small range of values of ε predicts it accurately. The comparison be-

tween numerical and analytical results is shown in Figure 4.14. In this experiment, the

value 4.0× 108 returns an accurate estimate of timpact . While the elements overlap, the

contact force preserves equilibrium, afterwards the gap opens and the bars move apart.

The final velocity is also predicted accurately by all ε within the range in Figure 4.14.

Higher values of ε caused the rods to bounce repetitively before timpact .

This benchmark provided a mean to calibrate the penalty factor ε and showed its

influence over timpact . The value of ε found is in line with what advised in (247).
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(a) t = 0.00 s

(b) t = l1
c

(c) t = 2l1
c

(d) t = 3l1
c

(e) t = 4l1
c

Figure 4.13: Analytical solution of velocity (a) and stress (b) for collinear impact
problem.

4.4 Free falling particles benchmark

The aim of this test is to validate the logic of the new hierarchical contact search

presented in Chapter 3. To do so, initially the bodies are all separated, and they

repeatedly come into contact during the simulation.
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Figure 4.14: Influence of the penalty factor on time of impact.

For simplicity, only three convex bodies are considered: a fixed plane and two sand

grains falling under gravitational load. All these are described by tetrahedral finite

elements and the contact penalty formulation is used. The grains are rigid, modelled

with density 2.65 kg m−3 and fall under gravitational force whilst initially at rest.

The shape of the grains is reproduced from (222), whilst the plane is a square with

edge length of 0.5 mm.

The three bodies are represented in Figure 4.15 at different time-steps. At time

t = 0.00 s all bodies are separated. After few time-steps, the bottom grain collides with

the plane. The top grain however comes in contact only at approximately t = 1.00 S ,

see Figure 4.15(a)-4.15(c). Afterwards, it rolls over the bottom grain, reaches the

plane, and falls off it. The simulation terminates at time t = 4.00 S after about 45000

time-steps.

If self-contact is ignored, the three bodies form three body-contact-pairs. The dis-

tance between each pair is computed by means of the algorithms presented in Chapter 3

and illustrated in Figure 4.16. Each row pictures a time frame and each column high-

lights a specific body-contact-pair. When a pair of bodies is separated, the separating
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(a) t = 0.00s (b) t = 0.60s (c) t = 1.05s (d) t = 1.35s

(e) t = 1.65s (f) t = 2.70 (g) t = 3.15s (h) t = 3.90s

Figure 4.15: Two convex grains falling on a plane under gravitational load.

vector is shown. See for example Figures 4.16(a)-4.16(d). When a pair of bodies is in

contact, the overlapping facets are highlighted in red and green colour. See for example

Figures 4.16(e), 4.16(h).

The GJK algorithm computes, for each body-contact-pair, the separating vector.

As described in Section 3.3, to save computing effort, this is not recomputed at each

time-step. Instead, the distance d between a pair of bodies is recomputed only when

the estimated distance d̃ becomes null or negative.

The result of this benchmark shows that the inequality d ≥ d̃ is always verified,

hence the logic of the contact search is sound. Figure 4.17(a) shows the history of the

squared distance between the top grain and the plane; the distance is a smooth and

continuous curve which is never exceeded by d̃ . Similarly, Figure 4.17(b) represents

the same quantities for the body-contact-pair composed by the two grains. The fact

that d̃ has an oscillatory trend does not compromise the accuracy of the solution. To

minimise the computing time, however, the number of oscillations of d̃ should be as low
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t
=

0.
00

(a) (b) (c)

t
=

0.
60

(d) (e) (f)

t
=

1.
35

(g) (h) (i)

t
=

2.
70

(j) (k) (l)

Figure 4.16: Contact search for each body-contact-pair at t = 0.0, t = 0.6, t = 1.35
and t = 2.70. The rows represent different body-contact-pairs at a given time: (a)-(c)
t = 0.0, (d)-(f) t = 0.6, (g)-(i) t = 1.35 and (j)-(l) t = 2.70.
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as possible. The definition of d̃ proposed in Section 3.3 allows to reduce the number

of oscillations and, consequently, the number of calls to the GJK algorithm.

In this benchmark, to compute d at each time step, a brute-force approach would

have called the GJK algorithm 60734 times, however, the proposed approach invokes

it only 2769 times, reducing the number of calls by 95%. This proves that, despite

Figure 4.17 shows a rather dense pattern for d̃ , the problem can be solved accurately

in a sustainable number of calls to the GJK algorithm.

(a) Distance between top grain and plane.

(b) Distance between top and bottom grain.

Figure 4.17: Evolution of exact and estimated distances for the grains in Figure 4.15.
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60◦
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(a)

Figure 4.18: Dimension of the geometry used in the ironing benchmark.

(a) (b)

Figure 4.19: Geometry (a) and approximate convex decomposition (b) of large sliding
benchmark.

4.5 Ironing benchmark

This section introduces a new ironing problem, in which a single–element body slides on

top and a concave body with dimensions illustrated in Figure 4.18 and mesh depicted

in Figure 4.19(a). This benchmark is somehow similar to the ironing problem presented

in (139), expect that the concave body makes the contact detection task more difficult.

The problem considers two deformable and unconstrained bodies. An initial angular

velocity 1rad
sec

is given to the single-element body, so that this gently slides over the

whole surface of the concave body. Both bodies are free to move in space and the

material properties are the same as in Section 4.3.1. Because of the large displacement,
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a standard binary tree search may be not efficient to solve this problem and is here

replaced by the new algorithmic framework presented in Section 3.3.

Unlike the benchmarks presented thus far, this model involves a concave body

which has to be decomposed in approximatively convex sub-bodies. The result of such

decomposition is shown in Figure 4.19(b). This generates three approximatively convex

sub-bodies that are passed to the hierarchical contact search. If self-contact pairs are

ignored, the decomposition forms three body-contact-pairs.

Let us recall from Chapter 3 that the objective of the approximate convex decom-

position is to facilitate the narrow contact search by generating smaller well-balanced

binary trees. By adopting multiple trees of smaller size, it becomes easier to keep the

trees balanced. Furthermore, less memory is needed if the contact regions is a restricted

part of the domain.

The solution to this benchmark is shown in Figure 4.20 at different time steps. The

moving object approaches the top-surface almost tangentially (Figure 4.20(a)) and a

small overlap is maintained by the penalty formulation during contact (Figure 4.20(b)).

The sliding object begins to revolve around its centre of mass as it departs from the

other object, the revolution however appear to be off-plane (Figure 4.20(c)). After

further investigation, it was concluded that this unexpected behaviour is not related

to the contact search, but dependent on the penalty factor and on the time-step size.

The former affects the contact force and hence the time at which the sliding object

is repulsed; the latter influences the accuracy of stress computed within the sliding

element as it begins to spin.

The benchmarks is repeated using a classic binary tree search and the hierarchical

contact search presented in Chapter 3. It is found that the kinetic energy of the system
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(a) (b) (c)

Figure 4.20: Time-frames of the solution of the large sliding benchmark at time 12 ms
(a), 20 ms (b) and 24 ms (c).

is identical when computed with the two approaches. Similarly, the barycentre of the

sliding object tracks the same trajectory in both cases. The graphs depicted in Fig-

ure 4.21 presents these results. The comparison considers the ADT (25), a classic binary

tree search for contact mechanics problems, and the newly prosed method involving

approximate convex decomposition. Notice that, despite the spinning highlighted in

Figure 4.20(c), the horizontal coordinate of the barycentre of the single-element ob-

tained with the two methods is identical. From this, it can be concluded that the

results are not affected by the implementation of the contact search algorithms.

The comparison between the two methods match perfectly, demonstrating that

the implementation is accurate and correct. However, this benchmark is too small to

observe tangible reduction of CPU time; Chapter 5 presents an application in which a

significant reduction of computing time is achieved with the new method.

4.6 Scalability of contact algorithms

This section assesses the applicability of the hierarchical contact search presented in

Section 3.3 by comparing its theoretical cost against other methods widely used for

engineering simulations. The comparison focuses on the narrow search phase, which is
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(a) (b)

Figure 4.21: Result comparison for sliding benchmark: kinetic energy (a) and single-
element coordinate of barycentre (b).

governed by the binary trees.

Of particular interests are the memory and number of operations needed for building

and traversing a tree (the traversing operation corresponds to solve the intersection

problem). These must be within the hardware capacity to enable the solution of large

simulations. Furthermore, it should be recalled that the key difference between common

methods and the new one is that the latter requires to build a binary tree for each sub-

body resulting from the approximate convex decomposition.

Let us begin by describing the worst-case scenario; that is, the object configura-

tions which require the highest number of operations to solve the intersection problem.

Consider a computational domain in Rn with m approximately convex bodies, each

one of these has l outer facets. The worst-case configuration is realised if the m bodies

are mutually in contact. This is because the new method would build and traverse

m(m−1)
2

binary trees, one for each body-contact-pair.

The number of binary trees is therefore proportional to O(m2), and significantly
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higher than common approaches, but it exists an upper limit to m . A particular

case of this worst-case configuration was studied by Descartes (119), who formulated

a theorem which states that only n + 2 spherical objects can mutually contact each

other. That is: only 4 disks in R2 , or 5 spheres in R3 , can be assembled tangent to

each other. Although there is no mathematical proof, it is reasonable to assume this

limit holds for approximately convex bodies even if non-spherical.

This analysis assumes m ≤ 6, which is a pessimistic scenario. To account for

non-convex bodies and for the overlap due to penalty contact formulations. A further

assumption is that the number of operations for building and traversing a single binary

tree is in the order of N logN , where N = m · l is the number of items to be listed in

the tree. This is in agreement with most of binary trees (64); for example, the ADT

presented in (25) has cost O(N logN). Based on these assumptions, it is possible to

estimate the theoretical cost of the hierarchical contact search and compare it against

the standard ADT.

The cost for building and traversing a standard binary tree amounts to 2N logN ,

assuming that m contacting bodies, with l facets each, are listed in a single tree.

The new hierarchical contact search decreases the building costs to m l log l since

each tree has only l listed items. The traversing cost however scales quadratically with

the number of trees, namely: m(m−1)
2

l log l . This suggest that the newly proposed

algorithm may result not sustainable for large values of m , but it would result cheaper

than existing methods if m is sufficiently small.

The analysis that follows aims to quantify the threshold value of m for which the

new and other methods have similar costs.

Figure 4.22 illustrates the worst-case scenario costs of a standard ADT and com-
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(a) (b) (c)

(d) (e) (f)

Figure 4.22: Normalised cost functions for building (a), traversing (b) a single bi-
nary tree and the sum of these costs (c). Normalised cost functions for building (d),
traversing (e) a multiple binary trees and the sum of these costs (f).
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pares it with the costs of the new hierarchical contact search. The latter requires

fewer operations for building trees, see Figure 4.22(a) and Figure 4.22(d), however the

quadratic dependence of the number of bodies governs the traversing operation. The

cost of traversing a single binary tree (Figure 4.22(b)) does not show a steep gradient

when the number of bodies increases, while traversing multiple ADTs for 4 or more

mutually contacting bodies results significantly more expensive (Figure 4.22(e)). Over-

all, the total costs are summed and shown in Figure 4.22(c) for a single ADT, and in

Figure 4.22(f) for the new contact search approach.

From the difference between the total costs associated to a single tree and multiple

trees, it is possible to quantify the gain of a method with respect to the other. This is

illustrated in Figure 4.23 along with a continuous line that marks the no-gain level-set,

i.e. when the two methods have the same theoretical cost. The region to the left of this

line is where the new contact search results cheaper, whereas the region to the right

indicates that a standard ADT would perform better.

Figure 4.23 shows that when the number of bodies m mutually in contact is smaller

than 4, it is advantageous to treat each body-contact-pairs individually. If m = 4 there

is no theoretical advantage of a method over the other, but for larger values the cheapest

approach is to employ a single ADT only. Furthermore, the results show that the gain

is nearly independent on the number of outer facets of a body when this is sufficiently

large (approximatively 200 or above). This is shown by the isosurfaces which tend to

become vertical lines as the number of facets per body increases.

The results presented in this section show that the theoretical cost of the new narrow

search approach is sustainable and comparable to the one of existing methodologies.

This is concluded from an analysis that looked at dense configurations of polydisperse
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Figure 4.23: Gain of common narrow search methodologies over the new hierarchical
contact search presented in Chapter 3. The tick continuous line shows the no-gain
level-set, that is, when the gain is null.

nearly-convex bodies. Consequently, for loose assemblies it is expected a reduction

in computing cost. Only extremely polydisperse and dense assemblies can cause the

theoretical cost to be higher; however, as it shall be presented in Chapter 5, this

scenario is not encountered in reality.

4.7 Particular case of concave NURBS bodies

As the literature review in Chapter 2 highlighted, there is a need for contact detection

algorithms that can handle NURBS bodies efficiently.

There are essentially two challenges to address while solving distance queries with

NURBS in computational mechanics:

1. The cost associated to the evaluation of the basis functions; and

2. The solution to point projection problems depends upon an initial guess difficult

to define.
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The former makes the construction of usual spatial data structures search more expen-

sive, the latter affects predominantly the narrow phase of contact search, in which an

inaccurate initial guess will lead to a slow converge rate or, even worse, to an incorrect

solution (local minima).

The methods presented in Chapter 3 have been designed to address these challenges

and this section illustrates how to solve, within the novel hierarchical framework, dis-

tance queries between a point and concave NURBS. For the sake of completeness,

basic notions of B-splines basis and NURBS functions are briefly reviewed below. Sec-

tions 4.7.2 and 4.7.3 focus on the two challenges described above, respectively.

4.7.1 B-spline functions and NURBS surfaces at a glance

NURBS have properties that are rooted in the B-spline basis functions. The properties

that will be exploited for solving distance queries are briefly reviewed.

The most common formulation of B-spline basis function is due to Cox and de

Boor (54): the i-th B-spline of order p is a function Ni,p(u) defined over the interval

u ∈ [u0, um] by means of m = n + p + 1 knots. All knots are listed in non-decreasing

and non-uniform1 knot vector Ξ = {u0, ..., um} .

It is possible to evaluate efficiently B-splines basis functions with finite-precision

arithmetic by means of the Cox-deBoor recursive formulation:

Ni,0(u) =


1 ifui ≤ u < ui+1

0 otherwise.

(4.7a)

Ni,p(u) =
u− ui
ui+p − ui

Ni,p−1(u) +
ui+p+1 − u

ui+p+1 − ui+ 1
Ni+1,p−1(u) (4.7b)

1Non-decreasing means that u0 ≤ .. ≤ ui ≤ .. ≤ um . Non-uniform means not equally distributed
between the domain extrema u0, um .
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The evaluation of Ni,p(u) for an arbitrary order p from the step function in Eq. (4.7a)

and it continues with the linear combination in Eq. (4.7b) for functions of order p > 0.

B-splines basis functions have important properties that are exploited by the algo-

rithmic framework developed in this thesis. These are briefly reviewed here:

P. 4.1. Local support : Ni,p(u) = 0 if u 6∈ [ui, ui+p+1]

P. 4.2. Non-negative: Ni,p(u) ≥ 0 for all i, p and u

P. 4.3. Partition of unity :
∑i

j=i−pNj,p(u) = 1 for all u ∈ [ui, ui+1[

P. 4.4. Continuity : Ni,p(ui) has p− k derivatives in ui , where k if the multiplicity of

ui in the knot vector.

B-splines are used to define NURBS bodies, such as the curve C(u) in Rn :

C(u) =

m∑
i=0

Ni,p(u)Piwi

m∑
i=0

Ni,p(u)wi

=
n∑
i=0

Ri,p(u)Pi (4.8)

where Pi is a list of control points, each one associated to a weight wi , and Ni,p are

the B-spline basis functions defined in Eq. (4.7). In what follows, the extrema of the

knot vector Ξ have multiplicity p+1 and are normalised between 0 and 1 for practical

reasons. Furthermore, the rational function Ri,p(u) is defined over the knots of Ξ which

may be non-uniformly distributed; hence the name “NURBS” (non-uniform rational

B-splines).

From the contact search point of view, the two most important properties that

NURBS inherit from B-splines are:

5. Interpolatory at the extrema: C(0) = P0 and C(1) = Pm ;

6. Convex hull : For u ∈ [ui, ui+1] , it follows from P. 4.1-P. 4.3, that C(u) lies within

conv {Pi−p, ..., Pi} .

For further details on B-splines and NURBS, refer to (191, 205).
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Point x y w

P1 0.25 0.25 1
P2 0.20 1.25 1
P3 1.50 1.25 1
P4 1.00 −0.75 3
P5 2.75 −0.75 1
P6 2.75 0.15 1

Figure 4.24: Illustration of convex hull property for a quadratic NURBS curve defined
on Ξ = [0, 0, 0, 0.25, 0.5, 0.75, 1.0, 1.0, 1.0].

4.7.2 Bounding volumes

Aided by the improvements made to the GJK algorithm, the novel methods presented

in Chapter 3 make use, to the best of the author’s knowledge, for the first time of the

convex hull property 6 to solve distance queries between NURBS.

It follows from 6 that control grids offer a natural bounding volume to hierarchical

contact searches. Furthermore, since the property holds true of an arbitrary interval

[ui, ui+1] ⊂ Ξ, NURBS may be decomposed in approximatively convex shapes at no

extra cost. Formally: the set of points {C(u?) : u? ∈ [ui, ui+1} is contained in

conv {Pi−p, ..., Pi} . This property is illustrated in Figure 4.24, in which a knot uj

is taken in the interval [ui, ui+1] and the convex hull conv {Pi, ..., Pi+p+1} containing

C(uj) is highlighted.

With no extra coding, the GJK algorithm can be used to measure the distance

between a point Q and the convex hull conv {Pi, ..., Pi+p+1} , or a portion of it. If

d(conv {Pi, ..., Pi+p+1}, Q) > 0, as described in Chapter 3, the hierarchical contact

search continues without building bisection trees. If d(conv {Pi, ..., Pi+p+1}, Q) = 0

the contact search triggers the narrow phase and the GJK returns a set of points, not
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necessarily unique, that supports Q in conv {Pi, ..., Pi+p+1} . These are of course the

support points in Eq. (2.16). For the example in Figure 4.24 a set of support points

returned is {P2, P3, P4} .

The following section illustrates how the information about the support of Q is

used to initiate the narrow contact search.

4.7.3 Initial guess for projection problems

A projection problem consists of finding the point on a NURBS which is closest to a

query point than any other NURBS point. Projection problems are of utmost impor-

tance for many applications that involve NURBS; for example, in engineering these

are the starting point for solving distance between bodies or computing contact forces.

The solution of such problem is most efficiently computed with iterative procedures,

(113) whose convergence however depend upon an initial guess.

On the one hand, a good guess is expensive to compute but, on the other hand,

a poor guess may converge to local minima (191). Good guesses may be found with

a brute-force approach, which consists of evaluating a NURBS at arbitrary values of

the knot span to obtain sample points: the sample which realises the shortest distance

is then used as the initial guess. This approach, however, is computationally too

expensive. Moreover, it does not guarantee that one of the sampling points provides

an initial guess sufficiently close to the solution. On the other side of the spectrum are

subdivision methods such as (112, 145). These aim to reduce the computing cost of

initial guesses (192), but an ultimate solution has not been found yet.

The novel hierarchical contact search can provide, with no extra coding, initial

guesses for solving projection problems. This section presents the idea to estimate
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the initial guess on NURBS, and the methodology is illustrated for a representative

example of non-convex NURBS.

Let us consider a body Ω ⊂ Rn described by a NURBS surface S(u, v). This is a

bivariate function, whose image is zp , defined over the knot vectors Ξu and Ξv . S(u, v)

is obtained from the tensor product construct of two univariate NURBS (191):

S(u, v) =
nu∑
i=0

nv∑
j=0

Ri,pu(u)Rj,pv(v)Pi,j (4.9)

where {Pi,j} form the grid of control points in Rn , and the rational functions Ri,pu(u),

Rj,pv(v) are defined in Eq. (4.8).

To project a query point Q on the surface S(u, v), one has to compute a pair of

unknown knots ui ∈ Ξu and vi ∈ Ξv , that realises the shortest distance d(Q,S(ui, vi)).

The computation of ui and vi requires an iterative algorithm to find the roots of

F (u, v), where:

F (u, v) =

f(u, v)

g(u, v)

 =

∂S(u,v)
∂u
· (P − S(u, v))

∂S(u,v)
∂v
· (P − S(u, v))

 . (4.10)

Eq. (4.10) is derived from the definition of distance and orthogonal condition in Eq. (2.7),

the latter introduces the dot product and ensures that the distance is minimum when

F (ui, vi) = 0.

Algorithm 7 shows a routine for solving Eq. (4.10) with Newton’s iteration. The

required inputs are Q , the data structure defining S(u, v) and an initial guess of the

solution (u0 and v0 ). The user should also specify a tolerance ε1 on the distance

d(P, S(u, v)) and another one ε2 on the F (u, v). The process terminates if any of

these values is below the respective tolerance, or if the updated solutions ui+1 , vi+1

remain nearly constant between consequent iterations.

The convergence of Algorithm 7 is subject to the initial guess of u0 and v0 , and the
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Algorithm 7 Projection on NURBS surface

1: Inputs: query point P , surface S(u, v) and initial values for u0 and v0 .
2: ε1 , ε2 , i = 0
3: Continue = 1
4: while Continue do
5: Evaluate surface and its derivatives at ui, vi :
Si = S(ui, vi)

Su = ∂S(ui,vi)
∂u

Sv = ∂S(ui,vi)
∂v

Suu = ∂2S(ui,vi)
∂u2

Svv = ∂2S(ui,vi)
∂v2

Suv = ∂2S(ui,vi)
∂u∂v

6: if | (P − Si) | ≤ ε1 then
7: Continue = 0 . Points coincide
8: if |(P−Si)·Su|

|(P−Si)| |Su| ≤ ε2 and |(P−Si)·Sv |
|(P−Si)| |Sv | ≤ ε2 then

9: Continue = 0 . Orthogonality satisfied

10: Assemble:

F =

[
Su · (P − Si)
Sv · (P − Si)

]
and

J =

[
Su · Su + (P − Si) · Suu Su · Sv + (P − Si) · Suv
Su · Sv + (P − Si) · Suv Sv · Sv + (P − Si) · Svv

]
11: Compute new solutions ui+1 and vi+1 from:

J

[
ui+1 − ui
vi+1 − vi

]
= −F

12: Set: i = i+ 1 . Increment iteration counter
13: if ui ≤ 0 then
14: ui = 0

15: if ui ≥ 1 then
16: ui = 1

17: if vi ≤ 0 then
18: vi = 0

19: if vi ≥ 1 then
20: vi = 1

21: if |(ui − ui−1)Su + (vi − vi−1)Sv| ≤ ε1 then
22: Continue = 0 . Parameters do not change
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new hierarchical contact search presented in Chapter 3 is designed to provide a good

initial guess to it. The idea is to use the knowledge of the witness points computed by

the GJK algorithms. This information are acquired during the broad contact search

and are therefore available in the narrow phase at no extra cost.

Let us consider an arbitrary NURBS curve C(u) with u ∈ Ξ = [u0, ..., um] and

control points {Pi} . When invoked to compute the distance d(conv {Pi}, Q), the GJK

algorithm returns the witness point zP ∈ conv {Pi} expressed as a convex combination

of a small set {si} ⊂ {Pi} and barycentric coordinates λi . Namely, zP =
∑
i∈I
λisi ,

where I is the subset of points of {Pi} , not necessarily unique, supporting zP .

By observing that when d(conv {Pi}, Q) = 0 the points zP and Q coincide, it

is reasonable to ask whether it exists a relationship between the support of zP and

Q , which is the image of a good initial guess u0 . In other words, the support of

zP is expressed by λi and a small set I . Since zp ≡ Q , these may contain sufficient

information to find a good guess u0 whose image in Q . The rest of this section discusses

on a possible formulation of such empirical relationship.

The idea is to use λi as “weights” that the i-th support point in I exerts on the

estimated image of a good guess u0 . To do so, firstly, 2n sampling knots defined.

These are found between the extrema u0 and um of Ξ at 2n− 1 intervals. The value

defining the middle knot um is defined by the following equation:

um =
∑
i∈I

λiui (4.11)

where {ui} are the knots in Ξ at the positions defined by I . The first n sampling

knots are found at equal intervals between u0 and um , and n more sampling knots

are found at equal intervals between um and um . The initial guess u0 if found among
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(a) (b) (c)

Figure 4.25: Solutions for point projection problems between a query point Q and a
NURBS curve. The initial guess for the iterative solution is provided by the support
points of Q .

these 2n−1 samples by comparing the distance of their image on C(u) and Q. The one

realising the shortest distance is used to define u0 . Obviously a large number for n in

Eq. (4.11) makes the procedure more expensive, but in practise the value n = 5 works

well. This is a small value that makes the search for u0 computationally sustainable.

The effectiveness of Eq. (4.11) is presented by the example in Figure 4.25. The

figures correspond to three time-steps of the query point q travelling from left to right.

The solution of the point projection problem is initialized by the grey points on the

NURBS curve that is closer to q than any other. The minimum distance vector is

shown in purple.

A test in which q takes 500 steps to move from one part of the domain to the other

is performed. The tolerances are set to ε1 = ε2 = 10e− 5, and the result are compared

against a brute force approach that distributes 200 sampling knots homogeneously on

the NURBS curve. When successful, the root-finding algorithm converges in less than

8 iterations, 5 on average, to the correct solution. However, for the coarse control grid
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+

Figure 4.26: Solutions for point projection problems between a query point Q and a
h-refined NURBS curve.

Figure 4.27: Projection of a query point P on NURBS surface.

illustrated in Figure 4.25 the algorithm is successful only 80% of the times due to the

inaccurate guess of u0 . The rate of success increases to 92% when the NURBS curve

is h-refined, for example in view of an isogeometric analysis, as shown in Figure 4.26.

Similar results are obtained for the NURBS surface depicted in Figure 4.27. Al-

gorithm 7 converges on average in 12 iterations, but the rate of success is strongly

dependent on the position of the query point Q .

Overall, the examples presented in this section have shown that the novel algorith-

mic framework is applicable to non-convex NURBS curves and surfaces. Furthermore:
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• A new method for defining a good initial guess for projection problem is presented;

• NURBS bodies are treated intrinsically;

• The robustness increases for h-refined NURBS curves and surfaces.

4.8 Comparison with published works

This section presents numerical experiments that compare the new methods with other

published in the literature. Particular attention is paid to speed, accuracy and robust-

ness. The speed of an algorithm is measured by the time that a CPU spends in

executing a process, the time that elapses for the execution is the CPU time. For

iterative algorithms, such as the GJK distance algorithm, another important measure

of speed is the rate of convergence.

4.8.1 CPU time for primitive testing

The first experiments compare the CPU time required by three different recursive

algorithms: Johnson algorithm (106), Voronoi region search (64), and Signed Volumes

method (Chapter 3). These are tested to solve a distance query between a point and

all simplices in 3D. Degenerate simplices are not considered here.

For the sake of simplicity, all distance queries are formulated between a simplex τ

and the origin O . Therefore, these experiments compute the point of minimum norm

ν (τ). A test is carried out for each subregion of τ . This is done by varying the orien-

tation of τ with respect to O so that ν (τ) can be found in different subregions. For

example, all 9 subregions of a 2-simplex are tested by applying linear transformations

to the vertices of τ .
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The results indicate that all algorithms perform differently when testing different

subregions of a simplex. Johnson algorithm performs particularly well for all simplices

and its cost increases with the cardinality of the subset that contains O . The Voronoi

region search does not show such a uniform trend and it generally requires more CPU

time than other procedures. The Signed Volumes method performs exceptionally well

in some cases, but when the point of minimum norm is supported by a single vertex it

results expensive. The CPU time of all algorithms used to test 1-simplex, 2-simplex and

3-simplex is shown in Figure 4.28. These results are averages of a million repetitions and

refer only to certain subregions of the simplices (see details on the labels of abscissa).

Apart from 1-simplices, in all other cases the performance of these algorithms is

remarkably different. The difference in CPU time is due to the peculiar logic that each

algorithm follows. In fact, the solution to the distance query consists in finding the

subset containing O , and these results show that some logics are more efficient than

others. Figure 4.28 clearly indicates that the Johnson algorithm demands more CPU

time as the cardinality of the subset that contains O increases. The Signed Volumes

methods however shows an opposite trend: when the O is inside the simplex, the cost

is minimum.

4.8.2 Performance of the GJK algorithm

This section presents a parametric study aiming to assess the impact that different

distance sub-algorithms have on speed and accuracy of the GJK algorithm. Four sub-

algorithms are compared:

• Johnson algorithm and Backup procedure (JB)

• Johnson algorithm only (JH)
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(a) Test on 1-simplex

(b) Test on 2-simplex

(c) Test on 3-simplex

Figure 4.28: Comparison of CPU time for testing primitives using Johnson algo-
rithm (JB), Voronoi region search (VR), and Signed Volumes method (SV).
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• Backup procedure only (BK)

• Signed Volumes (SV)

Recall from Chapter 2 that, since the GJK algorithm was first conceived, Johnson’s

procedure is prune to instability issues. However, in real-time simulations the Backup

procedure results too expensive in terms of CPU time (225). Usually, for these appli-

cations, JH is preferred to JB. Furthermore, in practise BK is never used on its own,

but it will be here considered as reference solution.

The parameters varied in this study are configuration between objects and target

accuracy εtol . The three configurations studied are: distant, touching and overlapping.

Two different implementations of GJK algorithms, with and without hill-climbing (38),

are used to compute the minimum distance between two polytopes in 3D space.

Firstly, the CPU time dedicated to the distance sub-algorithm is measured for each

GJK call. This is the sum of the CPU time that the sub-algorithm requires at each

GJK iteration. Secondly, the CPU time required by a distance query is measured as

a function of εtol and the number of vertices in the polygonal spheres. Each test is

repeated one million times and the results is the average. The results are described

below.

CPU time for distance sub-algorithms. The overall CPU time required by the

sub-algorithms for computing the minimum distance between two polygonal spheres is

reported in the following tests.

Figure 4.29 compares the total CPU time of JB, BK and SV sub-algorithms for

colliding, touching and distant spheres with εtol = 1e−8. Results using hill-climbing

are in Figure 4.29(a). All configurations show similar trends: SV exhibits minimum
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CPU time, BK is the most computationally intense, and JB is in between the two.

Similar results are obtained when disabling hill-climbing, see Figure 4.29(b). There

is little difference in CPU time of when enabling or disabling hill-climbing. This is

not surprising since incremental techniques only affect the cost of evaluation of the

support function. Altogether, for all these experiments SV performs always faster or,

occasionally, as fast as JB.

For the next tests, the target accuracy is set to εtol = 10−14 . Results with and

without hill-climbing are shown in Figure 4.30(a) and Figure 4.30(b), respectively.

These show patterns similar to Figure 4.29, however in some cases hill-climbing on the

same mesh is more expensive.

More importantly, there are cases in which BK is faster than JB. This result is

counterintuitive and requires particular attention. The lack of accuracy of JB implies

that the GJK algorithm does not descend toward the optimal path, instead it takes

more iterations to converge and thus more CPU time. The SV sub-algorithm instead

does not exhibit such pathology and its computational cost seems independent from

the number of vertices defining the polytopes.

The results in Figures 4.29 and 4.30 demonstrate that there are cases in which the

accuracy of the sub-distance algorithm plays a key role on the computational cost of

the overall distance sub-algorithm. The speed-up achieved by SV over JB is between

10% and 25% for distant spheres and between 15% and 30% for overlapping bodies.

Only for touching bodies, their performance is comparable.

Effect of εtol on CPU time of GJK algorithm. Further experiments are

carried out to study the effect of the tolerance εtol on the CPU time of the GJK
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(a)

(b)

Figure 4.29: Comparison of sub-algorithms CPU time (ns) for εtol = 1× 10−8 with
(a) and without (b) hill-climbing. Three configurations are considered: distant, close
and overlapping spheres.
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(a)

(b)

Figure 4.30: Comparison of sub-algorithms CPU time (ns) for εtol = 1× 10−14 with
(a) and without (b) hill-climbing. Three configurations are considered: distant, close
and overlapping spheres.
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algorithm. Distance queries similar to those described earlier, between two polygonal

spheres, are repeated for different values in the range 10−8 ≤ εtol ≤ 10−14 .

The first tests invoke the GJK algorithm without hill-climbing. Figure 4.31 shows

the measurements of the GJK CPU time as a function of accuracy εtol and number of

vertices in one sphere. The graphs on the left use JB sub-algorithm, whilst the right

ones use SV. For all graphs in Figure 4.31, the CPU time increases with the number or

vertices and shows little dependence from εtol . This common pattern is not surprising

and is due to the evaluation of the support function, see Eq. (2.9), which increases

linearly with the number of vertices.

The sub-algorithm makes larger impact on the CPU time when hill-climbing is

active. Figure 4.32 shows the GJK CPU time as function of accuracy εtol for distant,

close and overlapping spheres. A comparison between the graphs on the left (JB) and

those on the right (SV), highlights that a reduction of CPU time is achieved by SV

sub-algorithm. The difference in CPU time is more pronounced when the objects are

found in contact (Figure 4.32(c)), in which case SV improves the performance from a

minimum of 5% to a maximum of 25%.

Let us now discuss the reasons behind the different performances of JB and SV. For

overlapping objects SV is faster because it finds the solution at the very first inspected

Voronoi region than JH. For distant configurations it is argued that SV is faster, or

as fast as JH, because of geometrical and numerical reasons. Firstly, the configuration

space obstacle CSO is given by the Minkowski difference P − Q (Eq.(2.8)) and its

morphology is dictated by the mutual orientation of P and Q . It exists a relationship

between the face of the CSO supporting the point closest to the origin and the faces

supporting the witness points zP ∈ P and zQ ∈ Q . Table 4.2 considers all possible
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(a)

(b)

(c)

Figure 4.31: Measurements of GJK CPU time for distant (a), close (b) and overlapping
(c) polygonal spheres without hill-climbing. The colourmaps represent the time in ns.
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(a)

(b)

(c)

Figure 4.32: Measurements of GJK CPU time for distant (a), close (b) and overlapping
(c) polygonal spheres using hill-climbing. The colourmaps represent the time in ns.
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Table 4.2: All combinations of faces supporting the witness points zP and zQ , and
resulting supporting faces of ν (CSO) = ν (τ).

zP ∈ zQ ∈ ν (τ) ∈

Vertex Vertex Vertex
Vertex Edge Edge
Vertex Polygon Triangle
Edge Edge Triangle
Edge Polygon Triangle
Polygon Polygon Triangle

combinations of faces (vertices, edges and triangles) supporting a pair of witness points

in physical space and uses the Minkowski difference to recast this face in configuration

space. As a result, the chances that the ν (CSO) lays on a triangle of the CSO are four

times higher than for any other face. The likelihood of finding ν (CSO) on a triangle of

a simplex suggests that the top-down search of the Signed Volumes method will return

an answer in fewer operations. Secondly, the accuracy of the distance sub-algorithm

makes a bigger impact on meshes with large number of vertices. This is because, on

finer meshes, a suboptimal search direction is more likely to compromise the evaluation

of the support function. As a result, the support function provides the GJK algorithm

with a simplex which is not directed toward the origin in the best possible way.

Overall, because the Signed Volumes method is more accurate than Johnson al-

gorithm, it reduces the CPU time by guiding the GJK algorithm toward an optimal

search path. To minimise the GJK CPU time, it is more important to optimise the

GJK convergence rate by increasing the accuracy of the sub-algorithm, rather than

minimise the number of operations with the risk of compromising the search path.

This is particularly important for problems involving large meshes or representations

of bodies whose the support function is expensive to evaluate.
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QP

Figure 4.33: Geometries used for the gear teeth benchmark.

4.8.3 Numerical robustness

This section focuses on the algebraic system solved by the distance sub-algorithm at

each GJK iteration. The aim is to compare the robustness of the GJK algorithm

when employing the Johnson algorithm and the Signed Volumes method. It should be

recalled, from Section 3.2, that the former solves Aλ = b , Eq. (2.20), while the latter

solves Mλ = p , Eq. (3.2). The Backup procedure is here disabled to study more

closely the effect of numerical robustness on the GJK algorithm.

Let us consider the 3D meshes of the gear teeth P and Q in Figure 4.33. The

GJK algorithm measures, at each solution step, the distance between the teeth as

they approach each other. Figure 4.34 shows the values of |det A| and d(P,Q) for

consecutive simulation steps. The red markers indicate that Johnson’s algorithm fails

three times.

The failures occur when |det A| is in the order of the machine precision, in particu-

lar, when degenerate simplices are passed to the distance sub-algorithm. As previously

observed in (225), numerical instabilities arise as a consequence of the cancellation

error that affects Johnson’s algorithm when solving Eq. (2.20).

The test is repeated by substituting Johnson’s algorithm with the Signed Volumes

method presented in Chapter 3. This time the distance decreases monotonically until
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Figure 4.34: Distance measurements for the test in Figure 4.33. |det A| is the de-
terminant of the coefficient matrix assembled by Johnson algorithm, when this value
approaches the machine precision the GJK algorithm returns erroneous results (red
marks).

the gear teeth touch each other, and the smallest value recorded by the GJK algorithm

is in the order of the machine precision.

Figure 4.35 compares the results obtained with the two distance sub-algorithms.

Unlike Johnson’s algorithm, the linear system assembled and solved by the Signed

Volumes is always well-conditioned. The results obtained from the GJK algorithm

using the JH sub-algorithm are shown in Figure 4.35(a), whilst Figure 4.35(b) shows

the results for the SV sub-algorithm. Figure 4.35(b) shows that the absolute value

of det M remains well above the rounding error for the whole simulation. On both

graphs, the coloured bands include the upper and lower limits of the determinant of

the matrices. The values of |det M| span a range well above the machine precision,

instead |det A| reaches ε several times.

By repeating the same test with different meshes, it is possible to verify that the

accuracy achieved by the GJK algorithm is limited when using JH. Figure 4.36 shows
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Figure 4.35: Results for the gear teeth benchmark using two different distance sub-
algorithms. det A and det M are the determinants of the coefficient matrices associ-
ated to Johnson sub-algorithm (a) and Signed Volumes method (b), respectively.

the different levels of accuracy achieved by the two sub-algorithms. The distance

measured at the last solution step using JH is in the order of ε1/2 , whereas SV reaches

values very close to ε . This is due to the fact that at the last iteration the GJK

algorithm generates a flat simplex that is close to the origin.

4.9 Concluding remarks

This chapter has verified the formulation and the computer implementation of the novel

algorithmic framework introduced in Chapter 3.

Care was taken to analyse and demonstrate the robustness of the Signed Volumes

method. It has been shown that this new method can handle degenerate geometries

with double-machine precision as well as with adaptive floating-point arithmetic. In

general, the latter increases the computing time, but it is recommended for problems

whose final solution depends directly on the outcome of the Signed Volumes method.
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Figure 4.36: Comparison of maximum accuracy achieved by the GJK algorithm using
Johnson (JH) and Signed Volumes (SV) procedure for the gear teeth benchmark.

Various scenarios involving rigid and/or deformable elements were investigated. A

large suite of tests involving spherical, tetrahedral and hexahedral elements was de-

signed to verify the correct geometrical resolution of contact. All combinations of

edge–to–vertex, edge–to–edge, edge–to–facet, etc. . . were tested for all combinations of

elements. In this chapter, only few selected examples were reported in which position,

displacement, kinetic energy and contact forces have shown the accuracy of the method.

Moreover, the penalty contact formulation was calibrated and assessed against analyt-

ical and published work. In particular, the longitudinal impact between collinear rods

was modelled to analyse the influence of the penalty factor over the time of contact.

Two tests have validated the logic of the new hierarchical contact search. The

first one involved three convex bodies, and the second one consisted of an ironing

problem in which a concave body was decomposed in approximatively convex sub-

bodies. Afterwards, the worst-case theoretical cost of building and traversing binary

trees was studied. From this, it was concluded that if four bodies are mutually in

contact, the cost of the new method is comparable to other common methods. However,

139



Chapter 4. APPLICABILITY, VERIFICATION & PERFORMANCE TESTS

for less than four contacting bodies, it could lead to again of 100% or more; whereas,

it is expected a similar loss, in the factor of 2, if 5 bodies are tangent to each other.

An important literature gap was addressed by presenting the applicability to NURBS

curves and surfaces. In this chapter, the hierarchical contact search was used to handle

concave NURBS objects during both broad and narrow phase. For the latter, how-

ever, further research is required to apply this algorithm to NURBS-based numerical

methods, e.g. isogeometric analysis.

Finally, an extensive assessment compared the performance of the new methods

against others published in the literature. Scenarios involving distant, touching and

overlapping bodies have shown that the GJK algorithm can now solve distance queries

up to 30% faster. CPU time remains the same for touching bodies and for morphologies

that yield to degenerate simplices. At the same time, the accuracy was increased to

machine precision ε , whilst originally it was
√
ε .

140



Chapter 5

Mechanical packing of

granular media

The mechanical behaviour of granular materials is governed by the microscopic interac-

tion of particles and their heterogeneous morphologies; these yield to complex contact

problems often tackled numerically. Existing methods reduce the problem complex-

ity by coarsely approximating the particle morphologies: a simplistic assumption that

is counterbalanced by material models difficult to grasp and calibrate. The compu-

tational bottleneck that prevents from using arbitrary particle morphologies, is the

contact processing. This is a major limitation even for simplistic approximations, e.g.

rigid and spherical particles, and is due to the extrinsic data structures used for con-

tact search. This chapter illustrates how the new algorithms reduces these costs and

enables to model granular materials using realistic morphologies acquired with X-ray

scans. The case study of a mechanical packing is presented to illustrate the influence of

grain discretisation over the final assembly. Furthermore, the hypothesis postulated in

Chapter 4, on the sustainability of the new contact search scheme, is here investigated.
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5.1 Introduction

Granular materials can either be natural (e.g. rocks, snow, sand) or man-made (e.g.

candies, ball bearings, pills) and they are the second-most manipulated material in

industry (11, 95). Their ubiquity has impelled a tremendous amount of research aiming

to better understand their mechanical behaviour and to provide engineers with tools

to predict it.

In recent years, numerical simulations have complemented experimental techniques

by offering engineers a scalable solution to study granular materials. These techniques

have shed light on the fundamental mechanisms by which particles interact at the

microscopic sale (microscale); DEM modelling has enabled the analysis of localised

phenomena and force chains (144, 146). More recently, multi-scale frameworks are

paving the way for modelling complex materials, such as: porous media, (227, 248),

and polydisperse conglomerates (3, 231).

The major limitation to numerical simulations is the computational cost of realistic

scenarios which involve billions of particles (120, 135, 260). The computational cost is

commonly reduced by introducing various simplifications in the model; however, some

of these alternate the overall response and particular care is required.

One of the most debatable assumption concerns the shape of the particles. It is

computationally cheaper to model a large number of simple particles, than fewer with

arbitrary shapes. However, since the mechanical behaviour of granular materials is

dictated by the way particles interact through contact, by modifying their shape, one

inevitably compromises the mechanical response.

In order to counterbalance crude approximations on the particle morphology ad hoc
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constitutive laws are required. These can either be sophisticated material models or

contact models, but both solutions need an experimental calibration. This makes the

numerical modelling significantly more expensive and complicated since it introduces

a number of (arbitrarily) model parameters. Essentially, simplistic approximations on

the particle morphology shift the complexity from an algorithmic perspective to the

physical constitutive modelling.

If no assumption is made on the particle shape, constitutive material and contact

models may be significantly simplified; however, executing the contact search on par-

ticles of arbitrary morphology is the major computational bottleneck (4, 49, 70, 103,

110, 247). As highlighted in the literature review in Chapter 2, existing algorithms

make use of extrinsic spatial structures: these are built and updated even for particles

unlike to get in contact.

The new algorithms presented in Chapter 3 could circumvent this computational

bottleneck. In fact, by conducting the broad search phase using intrinsic spatial struc-

tures, these would build and update bisection trees only for particles that are in contact.

In this chapter, the new hierarchical contact search is applied to tackle the algo-

rithmic challenges introduced by non-spherical, concave and deformable particles. The

particular case of dense mechanical packing of sand grains with realistic morphology

is studied. The aim of this work is therefore to: (i) assess the applicability of the al-

gorithms, (ii) quantify the difference between spherical and polygonal grains, and (iii)

investigate the influence of the mesh refinement.
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5.2 Motivations

The literature presents several methods for modelling granular materials. These can

be classified based on the assumption made about the morphology of particles:

1. Continuum assumption;

2. Idealised particles with statistically representative properties; and,

3. Arbitrary shape.

A large number of constitutive models have been published to model granular me-

dia as a continuum, however these are usually applicable only to a specific problem

and require experimental calibration. Although they have been successful in civil and

geotechnical engineering applications (99, 200, 219), they have difficulties to predict

localised phenomena, inhomogeneities and to solve large–displacement problems. Fur-

thermore, the calibration costs increase with the complexity of the model, as this must

reflect specific working conditions of the material. For example, if the temperature af-

fects the material behaviour, the calibration requires experimental results obtained at

different temperatures — likewise for strain-rate, environment moisture, etc... . These

limitations have motivated the development of distinct and coupled continuum-distinct

methods (163, 166, 185).

The second approach consists of modelling each particle as distinct computational

entity of elementary shape. Introduced by Cundall and Strack (51) to solve geotechnical

problems, this idea formulated the discrete element method (DEM). Since then, the

DEM has been applied in many engineering problems (146, 163, 180, 232). This method

uses an explicit time integration scheme in which the particle interaction is resolved

contact by contact and all particles are approximated by elementary shapes (such as
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spheres, cones or ellipsoids). The oversimplification on the particle morphology has

two consequences: (i) allows to use contact detection and resolution algorithms which

require little computing effort per particle, and (ii) varies the contact forces exchanged

by particles since it drastically modifies the contact area between them. The latter has

been shown to modify the macroscopic behaviour of the material (2, 4, 6, 98, 254) and,

similarly to continuum-based methods, requires an experimentally calibrated contact

model (146). Without this, the simplistic shapes would invalidated the modelling

results (146).

An increasing number of researchers withdraw the spherical-particle assumption to

preserve the geometry and to capture the mechanisms which govern the microscopic

behaviour. Some of these works have been driven by the advances of visualisation and

experimental characterisation tools. For example, 3D X-ray computed tomography was

used to study natural (79, 181, 252, 253) and man-made (111) geo-materials. X-ray

tomography enabled to acquire the real morphology of grains, described by triangular

meshes, and to use this to improve the fidelity of numerical models (4, 222, 230).

Particles described by polygonal meshes allow to capture inertia effects, compute

internal stresses and simulate fragmentation, thus enabling the study of explosions,

crushing, rock slicing, mechanical erosion and more. Other shape descriptions, reviewed

in (144), make use of clustered spheres (83), or NURBS (4, 129, 130, 131). The latter

is particularly promising, but in a early stage development and it is still not clear

whether, as stated in (4), NURBS reduce the computing time with respect to polyhedral

particles.

Polygonal meshes are indeed a versatile solution, but the literature does not present

a mesh sensitivity analysis that investigates the relationship between mesh resolution
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and final results. It is well-known, that in computational contact mechanics the dis-

cretisation plays a crucial role in the solution of continuum problems (247), and a

recent study emphasised the need for accurate descriptions of the morphology of gran-

ular materials (252). However, in DEM and other distinct methods, the relationship

between mesh resolution and final result is often overlooked.

Regardless of whether particles are rigid or deformable, the minimum and maximum

lengths of the mesh edges affect the final result of a numerical study. In what follows,

the minimum edge length and maximum edge length are described by Hmin and Hmax ,

respectively.

The values of Hmin and Hmax influence: the particle morphology, the way these

interact, and therefore the macroscopic behaviour of an assembly of particles. For

example, let us assume that 1.25 Hmin = Hmax . Given a particle size distribution and

three arbitrary values for Hmin : 0.18µm , 0.10µm and 0.07µm , the particle volumes

vary as show in Figure 5.1. This figure illustrates the probability density function

(PDF) of the particle volumes as these are described by a coarse, medium and fine

mesh size.

Figure 5.2 shows the influence of Hmin on the volume of a grain. Basically, one can

interpret the discrepancy between coarse and fine mesh as a numerical artefacts similar

to a chance of material properties.

To make use of finely meshed particles, and hence to carry out a mesh sensitivity

analysis, one needs to address the curse of contact detection. This motivates the

adoption of the new hierarchical framework for modelling granular materials.
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Figure 5.1: Probability density function (PDF) for particle volumes for different mesh
refinements.

Hmin = 0.18

Hmin = 0.10

Hmin = 0.07

Figure 5.2: Mesh convergence of mean grain volume for different values of minimum
edge length Hmin .
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5.3 Method

Three models are defined with the primary goal of comparing performance and out-

come of different contact search algorithms. These are implemented in the commercial

software LS-DYNA (143) and in a in-house DEM/FEM code. The latter makes use of

the new hierarchical contact search described in Chapter 3.

The models simulate the mechanical packing of sand. This consists of applying

gravitational load to a sample of particles poured, or sedimented, into a confined do-

main until they are settled (137, 175, 243, 245). Figure 5.3 illustrates four methods for

mechanical packing of particles. In Figures 5.3(a)-(b), the particles are poured, either

one after the other or from a hopper, into a confined containment. Alike sedimenta-

tion methods, illustrated in Figures 5.3(c), all particles fall under gravitational load;

however, in this case the particles fall all together (151).

On the one hand, pouring methods tend to generate a more realistic assembly of

particles, but the process in itself is slower than particle sedimentation; therefore, the

computing time is significantly higher. On the other hand, sedimentation methods are

computationally more efficient, but have to be coupled with geometrical deposition

algorithms to improve the fidelity of the final assembly.

This section presents a model to simulate the sedimentation process with a uniform

force applied at the top of the specimen, as depicted in Figure 5.3(d).

5.3.1 Metrics

This section introduces the two kinds of metrics used to characterise the assembled

particles. The first one concerns the description of the morphology of real sand grains
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(a) (b) (c) (d)

Figure 5.3: Different pouring and sedimentation methods for mechanical packing of
particles: (a) one particle at the time, (b) via a hopper, (b) pre-assembled geometrical
packing and (d) forced packing by a weight.

and correlates these with the particles in the numerical model. The second one refers

to properties of the whole assembly.

The particle properties are mainly concerned with the morphology and define the

so-called granulometry : a mean to measure and describe the particle size and shape

(10, 29). The size of a particle is expressed with respect to an equivalent sphere, that

is: the sphere with identical area or volume of a grain. The radius of the equivalent

sphere is then related to the radius of the bounding sphere: the smallest sphere that fully

contains the grain. To describe the shape of a particle new parameters are introduced;

these include roundness and surface texture are commonly used to distinguish between

different types of sand (10, 233, 243, 252) and are often referred as first order properties

(55).

The properties of the assembly are more deterministic and particularly important

to assess the outcome of the numerical simulation. The void ratio is one of the most
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important parameters and may be defined as follows:

e =
Vbox − Vparticles

Vparticles

(5.1)

Where Vbox is the volume of the containment in which the sand is poured, and Vparticles

is the sum of all volumes Vi of all N particles: Vparticles =
N∑
i=1

Vi .

Another important parameter is the coordination number. This quantifies the av-

erage number of contacts per particle and is defined by the following equation:

Z =

N∑
i=1

Ci

N
(5.2)

where Ci is the number of contacts of the i-th particle.

5.3.2 Material models

The container, its lid and the sand particles are all modelled with a simple linear elastic

material model. The material properties for the particles, assumed to be silica sand,

are reported in Table 5.1 from (56). Refer to Table 5.2 for the material properties of

the container.

All objects, including the sand particles, are deformable objects discretised by stan-

dard FEM elements. Allowing the particles to deform increases the complexity of the

contact search, but is required to capture fragmentation and inertia effects, for exam-

ple, when modelling impacts and particle crushing. The rigid-body assumption is a

simplification that is often made to reduce the computational cost, but also allows to

make use of simpler contact search algorithms. For example, under the rigid-body as-

sumption one can readily make use of the incremental GJK algorithm presented in (38).

However, this cannot be used for deformable bodies. The rigid-body assumption, is

here discharged to show that the new algorithmic framework is applicable in the most
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Table 5.1: Material properties of silica sand.

Density 2.65 kg m−3

Young’s modulus 7.6× 101 N mm−2

Poisson’s ratio 0.3

Table 5.2: Material properties of steel containment box.

Density 7.85× 103 kg m−3

Young’s modulus 2.1× 108 N mm−2

Poisson’s ratio 0.33

challenging scenario.

A further increase of complexity for the contact search comes from the assumption of

frictionless contact. This may lead to unrealistically dense packings, but the assemblies

thus generated have a lower void ratio, consequently, the solvers invoke the contact

processing functions more frequently. Of course any frictional law may be implemented,

but the frictionless assumption makes the contact search more demanding.

5.3.3 Geometry

The containment box and the sand particles are the two main geometrical entities

in the model. Each one comprises distinct bodies which, in turn, are decomposed

in approximately convex sub-bodies. All the geometries are described by tetrahedral

finite element and will be here detailed separately.

Containment A CAD model defines the geometry of the containment box. Outer

dimensions are illustrated in Figure 5.4, the wall thickness is 1.5 mm and there is a

gap of 0.25 mm between the lid and the walls of the box.

Figure 5.4 is also showing the minimum bounding spheres of few grains. These are not

used for contact search purposes, but only in the geometrical assembly: a pre-processing
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step detailed in Section 5.3.4.

4.5

6.3
6.3

Figure 5.4: Illustration of sectioned containment box with lid, few sand grains and
their minimum bounding spheres.

Particles Examples of real sand packings and an X-ray tomography are illustrated

in Figure 5.5. The first assembly is a loose packing (Figure 5.5(a)), while the second

is more dense and obtained by applying an external load (Figure 5.5(b)). The Ottawa

sand is widely studied in engineering and is often considered a good representative

example of sand. Its first order property are well-known and important for the numer-

ical modelling; however, to save computing time, it is often approximated by spherical

particles (65, 74).

This study uses the sand grain geometry in Figure 5.5(c), that corresponds to a high-

resolution 3D X-ray tomography of Ottawa sand. This is repeated and scaled to obtain

the size distribution outlined in Table 5.3. Even though not necessarily representative

of a specific scenario, the distribution in Table 5.3 serves the purpose of this study,

that is, the assessment of contact detection algorithms.
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(a) (b) (c)

Figure 5.5: Examples of Ottawa sand: loose assembly (a) from (237), dense packing
(b) from (55), and concave grain from 3D X-ray scan (c).

Table 5.3: Size distribution of the particles used for the numerical tests.

Radius Percentage

3.55× 10−1 mm 7%
2.50× 10−1 mm 76%
1.75× 10−1 mm 17%

5.3.4 Initial and boundary conditions

Initially all bodies are at rest. At time t = 0 sec the simulation begins and the

grains and the lid fall under gravitational load. The lid however is constrained to

remain perpendicular to the bottom of the box, which is fixed in all directions. This

affects the final assembly, but makes straight forward the post-processing of the results

presented in the following section.

The pre-processing operation assigns the material properties to the geometrical

entities, respectively described in Sections 5.3.2 and 5.3.3, and geometrically assembles

the grains into the containment box. These operations are performed in the following

order:

1. Generate the mesh of a reference grain. The refinement level is defined by the

minimum and maximum edge lengths of the tetrahedral elements, respectively

Hmin and Hmax = 1.25 Hmin .

2. Generate a list of N bounding spheres with radius distribution defined in Ta-
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ble 5.3 and assemble them with the geometrical packing algorithm described in

(55) (since better than (92)). All spheres must be included and not overlapping

with the walls of the containment box.

3. Replace each bounding sphere with the meshed grain scaled according to the

radius of the sphere and apply to it a random rotation. Notice that, since the

bounding spheres do not overlap, the grains randomly rotated do not overlap.

4. Place the lid of the containment box 2× 10−1 mm above the highest node of the

particle meshes.

5. Generate the mesh for the walls and the lid of the containment box.

Notice that, while the size distribution remains invariant, the third step introduces

a remarkable variation in the distribution of the particle volumes. In fact, a grain has

smaller volume than the bounding sphere which replaces it. If the sand particles were

modelled as simple spheres, the probability density function of the particles volume

would vary as shown in Figure 5.6. This of course means that particular care must

be taken when modelling sands grains starting from a list of bounding spheres; the

effect observed here is that the first order properties may be strongly alternated when

following the steps above. An optimisation process would be required to retain the same

size and volume distribution, however this would not affect the contact processing and

is therefore ignored in this study.

An important aspect which does affect the contact processing is the mesh refinement

of the sand grains. As depicted in Figure 5.7, the geometrical assembly algorithm pre-

sented in (55) positions a number of bounding spheres placed and the polygonal grains

are placed within them (step 3) before the random rotation is applied. Figures 5.7(b)-

(d) show the three levels of mesh refinement for three values of Hmin : 0.18µm , 0.10µm
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Figure 5.6: Probability density function (pdf) for polyhedra (fine mesh) and sphere
volumes with same radii distribution.

and 0.07µm . The results obtained with these three levels of mesh refinement are pre-

sented in the next section.

5.4 Results

The results obtained from the mechanical packing of 100, 1200 and 2400 grains are

presented in this section. The analysis is executed for polygonal grains and spherical

particles as these settle. This is terminated after 5 s, when the kinetic energy reaches

a plateau.

Each model is solved with the in-house code DEST and with the commercial soft-

ware LS-DYNA (143). Both solvers use an updated Lagrangian finite element formu-

lation, and the time integration is carried out explicitly. Moreover, two versions of

the in-house code are tested: with and without the new hierarchical contact search

described in Chapter 3.

The comparison between DEST and LS-DYNA aims to validate quantities such

as void ratio e and kinetic energy, but it cannot be extended to CPU time for three
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(a) (b)

(c) (d)

Figure 5.7: Geometrically pre-assembled spheres (a) used to bound polygonal grains
discretised with coarse (b), medium (c) and fine (d) meshes.

156



Chapter 5. MECHANICAL PACKING OF GRANULAR MEDIA

reasons. Firstly, because the two solvers use substantially different criteria for defining

the critical time-step; secondly, because they solve contact constraints with different

formulations; and, finally, the executables of the two solvers were generated with dif-

ferent compilers. Furthermore, LS-DYNA very little is known about the algorithms

implemented in it. For these reasons, a comparison of CPU time is meaningful only

for the two versions of DEST.

The post-process pays particular attention to the mesh sensitivity of the final posi-

tion of these particles. All tests run on a Linux machine with Intel® Xeon® E5-2630

and 32 GB RAM. Double-precision is used for all solvers.

5.4.1 Software verification

The tests presented in this section aim to: (i) assess the correct software implementa-

tion, and (ii) validate the assumption made in Chapter 3 about the limited number of

bodies mutually in contact1.

Firstly, the kinetic energy and the void ratio are compared using different solvers

to verify the correct implementation. The results are presented in Figure 5.8 which

shows that the void ratio obtained with the reference version and the new version of

the in-house code match almost perfectly. More results are shown in Figure 5.9, which

focuses on the time history of the kinetic energy predicted by the in-house solver and

LS-DYNA. The solves present congruent results only at the beginning and at the end of

the simulation, while bodies sediment the dissipation of the kinetic energy is different.

LS-DYNA presents a mild decay rate as well as spurious oscillation. Given that both

1 In Sections 3.3 and 4.6, it was postulated that only few bodies can be mutually in contact, and
on this argument it was assumed that the novel hierarchical contact search would be computationally
sustainable.
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model add the identical damping coefficient to the contact processing, it not clear why

LS-DYNA generates such oscillations. Again, the fact that LS-DYNA is closed-source

results the major constrain to further investigation; however, since both solves converge

to the value, which is the stopping criterion, the implementation is validated.

(a)

Figure 5.8: Verification of the evolution of void ratio for different contact search algo-
rithms.

Let us now compare the void ration e obtained with DEST and with LS-DYNA,

respectively the in-house and the commercial solver. Figure 5.10 illustrates the time

history for three assemblies with 100, 1200 and 2400 grains, respectively. In the three

graphs, the curves show a little discrepancy at the beginning, which however decreases

to almost zero as the simulations terminate. This is due to the random rotation assigned

to each grain at the beginning of the simulation which affects the sedimentation time,

and it has an insignificant influence on the final void ratio. In fact, the discrepancy

reduces as the simulation continues and is almost null when the termination time

t = 5 s is reached. Notice that the whole time history is here considered for the sake

of validation only, the final value of the void ratio is of course the most important

value.
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(a)

Figure 5.9: Comparison of the evolution of kinetic energy using different contact search
algorithms for the in-house solver and the commercial code LS-DYNA.

(a) (b) (c)

Figure 5.10: Void ratio history comparing the in-house code DEST with the novel
contact detection algorithms, and LS-DYNA for 100 (a), 1200 (b) and 2400 (c) grains
discretised with fine meshes.
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The outcome of the models above may now be post-processed to validate the the-

oretical analysis discussed in Section 4.6. After 5 sec of simulation time, when the

particles and lid are basically at rest, the label of the bodies in contact are exported.

These populate the i-th column and j -th row of the upper triangle of a N -by-N ma-

trix, where N is the number of bodies in the simulation. Figure 5.11 illustrates this

matrix for 1200 and 2400 sand grains. The matrices have a common pattern which

is a consequence of the algorithm defining the bodies and is not particularly relevant

in itself; it can be observed however that the latter has a more dense filling, whereas

the matrix bandwidth (denoted by segments of equal length L) is comparable in both

cases. This is because the active number of contact pair increases, but the number of

bodies mutually in contact remains essentially the same. This is an important result

that is useful for the validation of the assumption made in Chapter 3 about the lim-

ited number of bodies mutually in contact. For the sake of completeness, it is worth

recalling from Chapter 4 that for less than 4 mutually contacting bodies the new con-

tact search is advantageous. For more than 4, it may become excessively expensive.

Moreover, one may observe at the top of both graphs in Figure 5.11 a thin area densely

marked; this corresponds to contact pairs formed by lids, containment and grains.

The number of mutually contacting bodies can be obtained by processing further

the data illustrated in Figure 5.11. For the test involving 1200 concave grains, 4881

active body–contact–pairs are found. By counting the number of non-empty rows and

columns of the matrix it can be found that less than 5% of the particles involved are

mutually in contact with other five or six particles. A similar result is found for the

model with 2400 particles.

The results in Figure 5.12 show that the hypothesis made in Chapter 4 is valid. In
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L

(a)

L

(b)

Figure 5.11: Visualisation of bodies mutually in contact for 1200 (a) and 2400 (b)
grains. The body–contact–pairs which have their bodies touching or overlapping are
marked with a dot. Notice that the bandwidth, approximated by a segment L , is
comparable in both cases.
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fact, the percentage of grains which mutually collide with five or more grains is only

a tiny percentage, whereas the majority collide with three or less. Figure 5.12(a) and

Figures 5.12(b) show these results for the tests with 1200 and 2400 grains.

The results presented in this section have demonstrated that the new algorithmic

framework is sustainable and can, at least qualitatively, save computing time while

retaining accuracy. The next section aims to quantify this saving.

5.4.2 CPU time

The results of three models with 100, 1200 and 2400 grains are presented. Each model

is discretised with three different meshes: coarse (Hmin = 0.18µm ), medium (Hmin =

0.10µm ) and fine (Hmin = 0.07µm ). Each of these compares the CPU time spent

in collision detection by different implementations of the in-house solver. As already

mentioned, it is not possible to provide a comparison between the DEST and LS-DYNA

since they use different formulae for computing critical time-step and contact forces.

For example, LS-DYNA terminates the most demanding simulation in a third of the

clock-time, but DEST runs three orders of magnitude more iterations.

The comparison of CPU time spent for collision detection is shown in Figure 5.13.

Each graph presents the CPU time used by the reference and the new solver, that is:

the in-house code before and after the implementation of the new algorithms.

The CPU time reduction is, for all cases, between 35% and 60%. The reason behind

such a high speed-up is the tight bounding volume which employed the GJK algorithm

in the broad phase. This reduces dramatically the number of overlapping AABBs

and therefore the calls made to the most expensive facet-to-facet test functions. As

mentioned in Chapter 4, the GJK algorithm is invoked and triggers AABBs bisection
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(a) 1200 grains (b) 2400 grains

(c)

Figure 5.12: Distribution of bodies mutually in contact for models with 1200 (a) and
2400 (b) grains. Figure 4.23 is here reported in (c) for completeness and to recall that
the new contact search is advantageous only for 4 or less mutually contacting bodies.
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(a)

(b)

Figure 5.13: CPU time dedicate to contact detection of 100 grains (a) and 2400 grains
(b) using DEST, the in-house code, before and after implementing the novel contact
search algorithms.

trees to be build, updated and processed only when the bounding volumes of two

sub-bodies are in contact.

The amount of CPU time required by the GJK algorithm is shown in Figure 5.14.

The three curves represent the seconds of CPU time required to solve the model with

100, 1200 and 2400 grains, respectively. The CPU time increases as the mesh size is

reduced or as the number of grains increases, but the gradient of all curves decreases

164



Chapter 5. MECHANICAL PACKING OF GRANULAR MEDIA

Figure 5.14: CPU time required by the GJK algorithm for the simulation of sand
deposition using DEST.

for finer meshes and the reason for that is non-trivial.

Further investigation have shown that the steep increase follows from the variation

of active body–contact–pairs. These are fewer when employing a coarse mesh, but

the number increases and converges to a unique value when reducing the edge length

Hmin . This suggests that the mesh refinement influences both the contact processing

computing time and the final assembly. The next section pays further attention to this

observation.

5.4.3 Mesh sensitivity analysis

The drastic reduction of CPU time for contact processing makes sustainable the simu-

lation of sand grains discretised with fine meshes, thus enabling simulations to include

realistic grain morphologies. The mesh sensitivity analysis presented in this section

shows the effect that a finer mesh, closer to the realistic morphology, has on the final

assembly. This analysis examines whether the solution depends on the mesh or not.

Whilst this is an ordinary test for continuum-based methods, it is unfortunate that in
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Table 5.4: Coordination number Z obtained for models with 1200 and 2400 grains
using different edge lengths Hmin .

Hmin(µm) Number of grains Z

0.15 1200 8.09
0.15 2400 8.02

0.10 1200 8.15
0.10 2400 8.68

0.07 1200 9.25
0.07 2400 8.67

DEM the influence of mesh refinement is often overlooked. Section 5.4.2 has shown

results suggesting that the mesh refinement affects parameters such as coordination

number and void ratio. These observations are now closely inspected.

Let us consider the simple test in Figure 5.15 which involves 100 concave grains.

These are discretised with a coarse and a fine mesh. Upon termination of the simula-

tion, the lid finds a rest position which varies for the two mesh refinements.

The example in Figure 5.15 readily demonstrates the influence of the mesh over the

final packing, and therefore motivates the following mesh sensitivity analysis.

Coordination number The coordination number Z , introduced in Eq. (5.2), is

computed in a post-processing phase for the models with 1200 and 2400 grains.

In all tests, Z is found dependent on the mesh resolution, in particular, it increases as

the mesh is refined. The results summarised in Table 5.4 show that Z can vary up to

10% as the mesh is refined.

Void ratio The void ratio e , defined in Eq. (5.1), is measured at runtime for

grains modelled as spheres and as realistic polygonal meshes. A comparison of the

time evolution of e with spherical, coarsely and finely meshed particles is shown in
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Figure 5.15: Comparison between packings of 100 grains discretised with coarse (left)
and fine (right) meshes.
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Figure 5.16. These results are obtained from the simulation illustrated in Figure 5.15

with 100 grains. The large initial discrepancy is irrelevant, what is important is the

convergence shown after the first second of simulation. The results for the last three

seconds of simulation, magnified in the zoom area, show that the curves remain about

10%-20% apart from each other. The coarse mesh predicts a higher value of e , whereas

spherical particles are in between the two.

Figure 5.16: Effect of mesh refinement on void ratio for 100 grains.

Notice that the value of the void ratio represented in Figure 5.16 is not physically

representative. Firstly, because the number of grains is too small, and also because the

box boundaries affect the value of e . To remove this effect, an extra post-processing

step is required, but it is here ignored since beyond the scope of this study — which

is not to compute e of a particular sand, but rather to evaluate its sensitivity to the

mesh size.

The final void ratio for all mesh refinements is shown in Figure 5.17 for 100, 1200

and 2400 particles. It appears that the medium and the fine meshes converge toward

the value of 0.4, whilst coarsely meshed grains remain above 0.6. Furthermore, when
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Figure 5.17: Final void ratio for spheres and polyhedral grains with different mesh
refinement levels.

the grains are approximated with spheres, the void ratio is even higher: for the model

with 2400 particles, this is nearly double the value predicted by fine polygonal mesh.

Finally, a visual comparison of the results with 2400 grains is presented. Two

mesh refinements are compared: medium Hmin = 0.10µm and fine Hmin = 0.07µm .

The former is visualised by means of the in-house software DEST, the latter using

the commercial solver LS-DYNA — the choice of different visualisation software is

purely a matter of taste and it has already been shown in Figure 5.10 that these

solvers produce similar results. The first column of screenshots in Figure 5.17 shows

the results obtained with the medium mesh refinement, the second column regards the

finest mesh. By comparing the time frames, it is possible to see that the position of

the lid is identical until t = 1.00 s . Afterwards, at t = 1.25 s, the solution shows mesh

dependency and, upon termination at time t = 5.00 s, this influences the height at

which the lid settles.
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(a) DEST at t = 0.00 s (b) LS-DYNA at t = 0.00 s

(c) DEST at t = 0.45s (d) LS-DYNA at t = 0.45s

(e) DEST at t = 0.80s (f) LS-DYNA at t = 0.80s

(g) DEST at t = 0.85s (h) LS-DYNA at t = 0.85s

Figure 5.18: Mechanical packing of 2400 grains meshed with minimum edge length
Hmin = 0.10µm using in-house DEM/FEM solver DEST, and with minimum edge
length Hmin = 0.07µm using commercial solver LS-DYNA (continues).
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(i) DEST at t = 0.92s (j) LS-DYNA at t = 0.92s

(k) DEST a t = 1.00s (l) LS-DYNA at t = 1.00s

(m) DEST at t = 1.25s (n) LS-DYNA at t = 1.25s

(o) DEST at t = 5.00s (p) LS-DYNA at t = 5.00s

Figure 5.17: (Continued) Mechanical packing of 2400 grains meshed with minimum
edge length Hmin = 0.10µm using in-house DEM/FEM solver DEST, and with mini-
mum edge length Hmin = 0.07µm using commercial solver LS-DYNA.
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5.5 Concluding remarks

This chapter has shown how the new distance algorithms can improve the simulations

of contact problems. The particular application of sand particles was studied by means

of a FEM model. The sand grains were modelled using realistic concave morphology

and packed by a weight falling under gravitational load. The numerical results obtained

with a in-house software were validated against the commercial solver LS-DYNA.

The new hierarchical framework, composed by the distance algorithms presented

in Chapter 3, has shown a significant reduction in CPU time for the contact detection.

Three assemblies with 100, 1200 and 2400 particles were studied and, in all cases, the

saving were between 30% and 60%.

The tests were repeated for different mesh refinements to demonstrate the sensitivity

of the final assembly to the mesh resolution. The value of the void ratio is found

to converge toward a unique value as the mesh is refined. This conclusion can now

be drawn thanks to the improved distance algorithms, which drastically reduce the

computing time for the whole simulation.

Finally, an important hypothesis postulated in Chapter 3 about the performance of

the hierarchical search was validated. It was found that only few bodies are mutually

in contact, and this demonstrates the sustainability of the proposed contact search

method.
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Chapter 6

Optimisation of polycrystalline

microstructures

This chapter illustrates how engineers and material scientists can enhance their analy-

ses of heterogeneous microstructures by using the new methods presented in Chapter 3.

These are applied to solve morphology optimisation problems for the generation of rep-

resentative volume elements (RVEs) for multi-scale analysis. The optimisation process

makes a large number of calls to distance functions which are the computational bottle-

neck for these problems — particularly the solution of distance queries between convex

polytopes. Herein, the improved GJK algorithm is used to accelerate the convergence

of such optimisation. Applications to RVE generation are shown for polycrystalline

materials only, although the method is applicable to any material whose microstruc-

tures exhibits convex inclusions or voids. The tests presented in this chapter reproduce

an experimental morphology obtained from X-Ray scan. Conclusions are drawn based

on the comparison of CPU time and convergence rate for different GJK sub-algorithms.
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(a) (b)

Figure 6.1: Real carbon fibre composite (a) and virtual RVE (b). From (187).

6.1 Introduction

The macromechanical properties of metals, ceramics, composite, and other heteroge-

neous materials, are influenced heavily by their microstructures. Properties which are

relevant to engineers include: strength, ductility, thermal conductivity or permeability.

In order to predict and to better understand the mechanisms determining these prop-

erties, homogenisation techniques have been developed. In recent times, multi-scale

analysis has used homogenisation to include the microscopic effects into large-scale

models.

Multi-scale modelling begins with the definition of RVE. The purpose of the RVE

is to establish a link between micro-scale model and macro-scale models. Intuitively,

an RVE may be seen as a “small cell” of apparently homogeneous material at the

macro-scale, but heterogeneous at the micro-scale.

From the geometrical point of view, an RVE is a model defined over a simple domain

within which several inclusions are scattered. The morphology and distribution of the

inclusions are defined by algorithms called RVE generator which take experimental
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data and generate the geometry for a micro-scale model. For example, the diameters

of the fibres in a glass fibre/epoxy composite may be measured experimentally from a

microscopic image similar to the one in Figure 6.1(a). The geometry of the correspond-

ing RVE, illustrated in Figure 6.1(b), is generated so that it statistically reproduces

the measurement on the fibres.

The generation of numerical RVEs requires few steps. Since FEM is the most widely

adopted method for multi-scale analysis, let us focus on the steps required to create

an RVE for FEM:

Step 1: input experimental data,

Step 2: populate the computational domain with inclusions or voids, and

Step 3: mesh the microstructure (and occasionally re-mesh at runtime).

Several studies following these steps have been published. For example, investigations

on open cell foams (108), composites (109), the evolution of surface roughness of metal

under dynamic loading (251), additive manufacturing (107), the temperature effect

at the grain boundary of metals (126) and synthetic polycrystalline materials (8, 57).

However, none of these methods could accomplish the three steps above without diffi-

culties.

The problem of generating a micro-scale FE model does not admit closed-form

solution and an optimisation procedure is therefore required. This takes in input

data that could either be specific to a given microstructure, or generic to a family of

materials. In both cases the procedure follows a sequence similar to the diagram in

Figure 6.2. Firstly, experimental data are interpreted to form an initial guess. This

is then used to initiate the iterative optimisation which continues until one or more

convergence criteria are met. The outcome is a geometry that quantitatively reflects
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Start

Input data for RVE generation

Create initial guess

Optimise

Convergence criteria met?

Export geometry

Stop

Yes

No

Figure 6.2: Flow chart for common RVE generation algorithms.

the input data.

Overall, generating an RVE involves frequent calls to distance functions that opti-

mise the morphology. Beside being the most expensive task, distance queries also play

an important role on the convergence rate of the optimisation.

6.2 Motivations

All steps in the RVE generation involve distance queries. Step 2, which populates

the domain, generates a virtual microstructure by assembling into the RVE a large

number of polydisperse inclusions. These can have complex morphologies, sometimes

unknown a priori, and they must fulfil certain geometrical constraints, such as peri-
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odic boundaries or non-overlap. These constraints are usually enforced by mean of

distance queries. Step 3, which meshes the RVE, requires a pre-processing step for the

regularisation of the geometry to guarantee high-quality meshing.

As mentioned in Chapter 2, there are many ways to represent voids and inclusions.

In composites materials, the fibres are simplified as monodisperse disks (7, 68, 102) or

cylinders (40). More rarely these are polydisperse (187). Ceramics and metals may

be roughly approximated by regular polytopes, such as cubes (203, 255). Regular in-

clusions are computationally simple to handle, but have limited ability to represent

realistic microstructures. Complex shapes might be represented by level sets (212) or

phase field functions (115, 201), but the computational complexity is rarely paid off

and their applicability seems confined to foams or single crystals (9). These exam-

ples emphasis that distance algorithms must be versatile to cope with more than one

representation.

This chapter focuses on irregular polytopes, which are widely adopted and allow the

numerical modelling of many heterogeneous materials. Polyhedral microstructures can

represent accurately the size distribution of cells and other morphological parameters

(e.g. sphericity). The straight edges and flat surfaces provide computational advan-

tages from the geometrical point of view and, despite their “regular” geometries, they

have shown good results in challenging scenarios of polycrystalline aggregates (66, 78)

or open and closed cell foams (198, 229, 241). Even for polytopes however, the optimi-

sation cost is governed by the frequent calls to distance functions. These are the major

computational bottleneck to RVE generation.

Little research has been devoted to reduce the computing time of RVE generators.

Most of the published work focuses on inclusions described by quadrics (e.g. spheres,
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ellipses or compounds of the two) and yet, recent works show, assembling one thousand

fibres in a composite RVE takes between 1.5 and 10 hours (CPU time) (187, 220). This

time increases when RVEs use polytopes an arbitrary number of edges and faces. The

reason is the higher cost for the evaluation of support mappings (see Chapter 2 for fur-

ther details) and for imposing geometrical constraints (e.g. tangency, exact distance)

between inclusions. Therefore, irregular polytopes require more complex algorithms

than quadrics. These often are the computational bottleneck which limits the genera-

tion of large and elaborated RVEs.

Aiming to improve the generation of RVEs, the following sections investigates the

applicability of the methods presented in Chapter 3 for the generation of virtual mi-

crostructures. Rather than defining the RVE for a specific material, this research

focuses on algorithmic details for general RVEs of materials whose microstructure con-

tains crystals or voids described by irregular polytopes.

6.3 Generation of microstructures

The major challenges to RVE generation are due to the large number of grains and

their complex morphology. Previous works on ice (123), magnesium alloys (72) and

ceramics (239) have shown that a single RVE require between 103 and 106 crystals and

that each crystal has a unique morphology. For this reason, a suitable mathematical

framework that allows to address such a complex scenario has to be identified.

Voronoi diagrams are by far the most commonly used tool for describing the ge-

ometry of polycrystalline microstructures. They offer a good compromise between

versatility and computational cost. Geometrically, Voronoi diagrams are a family
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of spatial partitioning techniques (177). They are used to divide the 3D space into

non-overlapping regions, usually known as cells. A partition requires a set of points

P = {pi : i ∈ IP} ⊂ Rm , with IP = {1, ...,m} , and a weight wi ∈ R associated to each

point. A Voronoi region V (pi) is defined for all points in P so that
⋂
i∈I
V (pi) = ∅ and⋃

i∈I
V (pi) = Rm . The point pi is called seed.

A type of Voronoi diagram differs from another by the formulae that establishes

whether a point p ∈ Rm belongs to V (pi) or V (pj), with i, j ∈ IP . The usual approach

is to define general dominance cell Hw(pi, pj) of a point pi over pj :

Hw(pi, pj) = {p : dw(p, pi) ≤ dw(p, pj) , i 6= j} (6.1)

where the function dw is the weighted distance between two points. It should be empha-

sised that dw effectively defines the morphology of the frontier between neighbouring

cells and hence, for this specific application, the grain boundary. The subscript w

highlights the dependence of the distance function from the weights.

Eq. (6.1) is a generalised form from which a generalised Voronoi diagram Vw is

obtained by extending the idea of dominance cells to all points in P . Vw is the set of

all cells V (pi) such that:

V (pi) =
⋂

j∈IP \i

Hw(pi, pj) for IP = {1, ...,m}. (6.2)

In practise, once dw is specified, a Voronoi diagram is able to approximate a polycrys-

talline microstructure whose crystals correspond to V (pi).

To specify a digram Vw , a distance function dw has to be defined. Common choices

of weighted distance functions dw and associated weights w , are reported in Table 6.1.

Each formulae can shape the grain boundary in different ways, as detailed in the table.

The weights play a crucial role: on the one hand, they allow extra control over the shape
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Table 6.1: Common definitions of weighted distance dw for Voronoi diagrams.

Type Function Weight Boundary in R2

Ordinary dw = wi‖x− xi‖ wi = 1 Straight line
Multiplicatively dw = wi‖x− xi‖ wi < 0 Circle, arc or straight line

Additively
dw = ‖x− xi‖ − wi :
‖x− xi‖ > wi − wj ≥ 0

wi ∈ R Hyperbolic arc or straight line

Compoundly dw = 1
wi1
‖x− xi‖ − wi2

wi1 > 0
wi2 ∈ R

Forth order polynomial curve
hyperbolic arc, circular arc
or straight line

Additively power dw = ‖x− xi‖2 − w2
i wi ∈ R Straight line

of grain boundaries, on the other hand, they rarely have a physical interpretation and

add a layer of complexity to the computational procedure. For these reasons, to date,

the only formulations exploited in engineering applications are those which construct

simple cell boundaries: ordinary and additively weighted power diagrams.

The rest of this section illustrates how to generate polycrystalline microstructures

starting from a raster image from X-ray scan using Neper (195), a software pack-

age for RVE generation and meshing. Neper is open-source and publicly available at

http://neper.sourceforge.net/ licensed under the GNU General Public Licence.

6.3.1 Diffraction contrast tomography (DCT)

Neper allows to generate an RVE by matching a virtual reconstruction of a specific,

real, microstructure. Diffraction contrast tomography (DCT) is a technique that makes

use of X-ray diffraction to generate 3D raster images of existing microstructures. These

images provide the target morphology that the optimisation process tries to reproduce.

A raster image is a set of voxels G = {vj} . Each vj is labelled by means of a

labelling function I to identify a unique grain G ⊂ G . The i-th grain is therefore
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described by a subset of voxels:

Gi = {vj ∈ G : I(vj) = i}. (6.3)

The grain Gi is approximated by the cell V (pi).

The position of the seed pi and its associated weight wi are found iteratively. To do

so, Neper solves an optimisation problem that minimises the following object function:

O = c

√√√√ N∑
i=1

δ2
i (6.4)

where c depends on the scan resolution and δi is a measure of the morphological

discrepancy between a grain Gi and its associate Voronoi cell V (pi). Essentially,

the optimisation aims to reduce O by varying the morphology of V (pi) so that the

discrepancy is small.

In practise, a DTC scan produces high-resolution images where the number of voxels

N is in the order of billions, making Eq. (6.4) prohibitive to compute. A viable solution

is to consider only the subset of voxels on the boundary of the grain: {vk} ∈ Gb
i , so

that the object function can be approximated as follows:

O ≈ c

√∑
vk∈Gb

i

d(vk, V (pi))2. (6.5)

Eq. (6.5) measures the discrepancy between the boundaries of the target tessellation

obtained from DTC scan and the boundaries of the Voronoi cell. Smaller values of

the objective functions are sought iteratively so that, upon convergence, the distance

between the grain boundaries represent by voxels and Voronoi tessellation is reduced.

As reported in (196), Neper relies on the GJK algorithm to compute the distance

between a voxel vk and a cell V (pi). This is a natural choice since Eq. (6.5) requires

to solve a distance query between a point and a cloud of points.

The evaluation of Eq. (6.5) has a tremendous impact on the optimisation process.
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Firstly, the high volume of distance queries per optimisation step makes it an expensive

task. Secondly, the rounding error occurring in the evaluation of the Euclidean distance

propagates. Furthermore, because of the high-resolution of DTC scans, there is a high

chance that voxels close to the faces of a cell cause instability issues to the GJK

algorithm.

Unless the distance in Eq. (6.5) is computed accurately to machine precision, the

convergence of the optimisation procedure, hence the generated RVEs, will be sub-

optimal.

6.3.2 Mesh regularisation

Once a virtual microstructure is available, this can be meshed and used for numerical

analysis. Polytopes with straight edges and flat faces are most commonly meshed with

unstructured grids of tetrahedral elements. Meshing is a relatively simple procedure

which essentially consists of subdividing a cell with tetrahedral elements of a desired

element size.

It has been shown that fine meshes can improve the agreement between numerical

and experimental results (255), however a cell may include edges significantly smaller

that the desired element size. The short elements are a consequence of the uncon-

strained optimisation and they have been reported as source of numerical artefacts in

various applications (17, 179, 195). When a cell with an edge shorter than a given

element size is passed to a mesh generator, this creates one or more elements around

that edge. The element thus generated has poor aspect ratio and can lead to unreal-

istic results in large-strain applications. Furthermore, short edges may constrain the

time-step in explicit dynamic simulations.
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Short edges can be removed by means of a regularisation process. The idea is to

replace the edge whose length is below a threshold value with a vertex. Regularisation

methodologies are presented in (174, 195).

Neper regularises a tessellation by merging two vertices of an edge with length

below a threshold value into one. This of course influences the topology of the target

edge and its neighbouring cells. Up to four (three) cells intersect in 3D (2D) at a single

vertex; therefore, up to four (three) neighbouring cells may require adjustments as a

consequence of an edge removal. The position of the new common vertex needs to be

determined so that the impact on the microstructure is as little as possible.

The position of a new vertex p is computed so that the distances to the initial faces

is minimal. A least-squares criterion is used to minimise the following function:

O =

√√√√ nf∑
i=1

d2
i (6.6)

where the distance di between the vertex and the initial faces of i-th face, for all faces

nf of the vertex.

While the computational cost of evaluation Eq. (6.6) is small compared to the opti-

misations steps, the accuracy of all distances di is crucial. The next section illustrates

how the algorithms presented in Chapter 3 may improve this computation.

6.4 Improving the generation process

Currently, to solve distance queries, Neper implements the GJK algorithm and the

Voronoi search as sub-algorithm (194, 196). As mentioned in Chapter 2, this is the

simplest sub-algorithm and careful coding can make it robust, but its performance is

notoriously poor (see (64) for implementation details and Chapter 4 for performance
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evaluation). Since the GJK algorithm is invoked many times per optimisation step,

it is reasonable to question whether a faster distance sub-algorithm could reduce the

optimisation cost.

The next section represents the results of an investigation which compares three

distance sub-algorithms for the generation of RVEs. In particular, the procedure de-

scribed in Section 3.2 will be tested to reproduce the morphology for a microstructure

obtained from DCT scan.

6.5 Results

Numerical experiments investigating the influence of different versions of the GJK algo-

rithm on the generation of polycrystalline microstructures are presented in this section.

Performance and quality of the resulting microstructures will be compared based on

the metrics defined in Section 6.5.1. Three distance sub-algorithms are studied: (i) the

Voronoi search algorithm currently implemented in Neper, (ii) Johnson’s algorithm

(including the Backup procedure as first described in (89)), and (iii) the Signed Vol-

umes method introduced in Chapter 3. All tests are carried out on a Linux machine

with Intel® Xeon® E5-2630 and 32 GB RAM using double-precision floating point

arithmetic.

6.5.1 Metrics

The following quantities are investigated:

• computing time,

• number of iterations to convergence,

184



Chapter 6. OPTIMISATION OF POLYCRYSTALLINE MICROSTRUCTURES

(a) (b) (c)

Figure 6.3: Raster image of DCT scan. Three resolutions: (a) low, (b) medium and
(c) high.

• length of the edges of the Voronoi cells,

• convergence ratio of the object function Omin , and

• minimum value of the object function Omin .

6.5.2 Reproduction of DCT scan

This section aims to generate 3D microstructures whose morphology matches a raster

image obtained from a DCT scan. The raster image of the specimen used in this section

was published in (193).

The method described in Section 6.3.1 is applied to three resolution levels of the

DCT scan, shown in Figure 6.3. In what follows, the results of low, medium and high

resolution raster images are discussed separately.
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(a) (b)

Figure 6.4: Comparison of CPU time (a) and convergence of target function (b) for
low resolution DCT scans.

Low resolution Neper is used to generate a tessellation from the raster image in

Figure 6.3(a). The convergence criterion is set to Oi−1
min −Oimin < 1× 10−5 .

The history of CPU time and Omin are depicted in Figure 6.4 for the three GJK

sub-algorithms. The overall CPU time of the procedure originally implemented in

Neper is significantly higher compared to the other algorithms. Figure 6.4(a) shows

that Johnson and the Signed Volumes algorithms have the same slope, i.e. the cost,

but the latter terminates in about half iterations. This is because, as can be seen in

Figure 6.4(b), the Johnson algorithm does not converge toward the minimum solution.

The minimum value of Omin is reached by the Voronoi search algorithm, whilst the

Signed Volumes leads to a slightly higher value.

Medium resolution A slightly higher resolution scan (Figure 6.3(b)) of the same

specimen is considered. The convergence criterion is now set to 10−6 with the aim of

analysing the influence over the overall convergence of different distance sub-algorithms.

The history of CPU time and Omin are depicted in Figure 6.5 for the three GJK
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(a) (b)

Figure 6.5: Comparison of CPU time (a) and convergence of target funtion (b) for
medium resolution DCT scans.

Table 6.2: Results for different sub-algorithms for medium resolution DTC scan.

Method Final Omin Iterations Elapsed time (min)

Voronoi search 5.102× 10−3 35536 151
Johnson algorithm 5.583× 10−3 31301 125
Signed Volumes 5.123× 10−3 35131 132

sub-algorithms. The overall CPU time, shown in Figure 6.5(a), reflects the trend of the

previous experiment. The Signed Volumes algorithms requires about 10% less CPU

time than the Voronoi Search, and the Johnson sub-algorithm terminates in remarkably

fewer iterations.

The reduced tolerance on the convergence criterion seems to have a positive impact

on the Johnson which however does not converge toward the minimum vale of Omin .

Figure 6.5(b) also shows that the convergence of Omin with the Johnson algorithm is

rather irregular when compared to the other methods.

The graph in Figure 6.6 highlights that the Signed Volumes and the sub-algorithms

originally implemented in Neper reach the same value of Omin upon converge. These

results are also summarised in Table 6.2.
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Figure 6.6: Comparison of object function convergence obtained with different distance
algorithms for high resolution DTC scan.

Figure 6.7: Comparison of CPU time of different distance algorithms for high resolution
DCT scan.

High resolution The high-resolution DCT scan in Figure 6.3(c) is now used

to generate a polycrystalline microstructure. Due to the large number of voxels, the

optimisation process is carried out using 24 threads and iterations are limited to 44000.

Surprisingly, the optimisation did not converge when using the Johnson distance

sub-algorithm. The cancellation error, which limits its accuracy, affects the optimisa-

tion from the very first iterations and the solution results unstable. Indeed, the resolu-

tion of this scan is not compatible with limited robustness of Johnson sub-algorithm.
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Figure 6.8: Comparison of object function convergence obtained with original method
and Signed Volumes method for high resolution test.

The wall-clock time and history of Omin are depicted in Figure 6.7 and Figure 6.8,

respectively. These reflect the trend found in the previous experiments, that is: when

running the Signed Volumes algorithm Neper requires about 25% less CPU time than

the Voronoi Search and both converge to a similar values of Omin .

A comparison of the target microstructure, the initial tessellation and the result

from the optimisation with Voronoi search and Signed Volumes is shown in Figure 6.9.

The graphs in Figure 6.10 shows the convergence of Omin against the wall-clock

time. The curves are about 10%–15% apart; the original Neper implementation termi-

nates at 6.38× 10−5 , whilst the new GJK sub-algorithm leads to a small improvement

as the smallest Omin value is 6.41× 10−5 .

The smaller value of Omin achieved with the new Signed Volumes method has

a moderate influence on the final tessellation and its regularisation, particularly on

the frequency of small edges. Figure 6.11 reports the normalised count of the small

edges before and after regularisation. The distribution is identical at the beginning
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(a) (b)

(c) (d)

Figure 6.9: Optimisation of polycrystalline microstructure: (a) target DCT scan image,
(b) initial guess, (c) Original GJK and (d) GJK with Signed Volumes.
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Figure 6.10: Objective function Omin versus CPU time.

(a) (b)

Figure 6.11: Comparison of edge length obtained with different distance algorithms
high resolution.
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(a) (b) (c)

Figure 6.12: Regularisation of a microstructure (a) using the original Neper implemen-
tation and (b) the Signed Volumes method (c).

(Figure 6.11(a)) and slightly improved when employing the Signed Volumes algorithm

(Figure 6.11(b)). A close inspection on the regularised microstructures reveals that the

former method overlooks some of the small edges, whilst the latter removes them, see

Figure 6.12. This difference is a consequence of the different values of Omin achieved by

the two implementations and the high accuracy of the Signed Volumes sub-algorithm.

6.6 Concluding remarks

In this chapter, the Signed Volumes distance sub-algorithm was applied to the gen-

eration of microstructures for multi-scale modelling of polycrystalline materials. The

routines described in Chapter 3 were implemented into the open-source software Neper
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and a performance comparison was carried out.

A specific microstructures obtained from DCT scan was reproduced by means of

an optimisation process with Neper. Three levels of resolutions of the DCT scan were

used. It has been found that the Johnson’s sub-algorithm is not applicable to high-

resolution DCT scans. Its limited accuracy leads to a poor convergence rate and, in

one case, Neper could not converge because of the approximations introduced by the

rounding error in the GJK sub-algorithm.

The Voronoi search and the Signed Volumes sub-algorithms are equally accurate,

but the latter is remarkably faster. In all tests the elapsed time is reduced from 10%

to 25% when GJK invokes the Signed Volumes sub-algorithm. For the high-resolution

test case, this procedure has generated a regularised microstructure with fewer short

edges, a result particularly desirable in large-strain and dynamic FE simulations.

Little coding effort was invested in implementing the new algorithms into Neper.

The improvements did not require invasive changes to the existing software, as only

the distance sub-algorithm has been replaced. Finally, it is claimed that this method

is applicable to any material whose microstructure is described by Voronoi diagram or

convex inclusions and voids, such as composite materials.
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Conclusions

This thesis has filled various gaps in the literature by developing novel distance algo-

rithms for computational mechanics applications. These offer an improvement with

respect to existing methodologies as they are: extremely versatile, more robust and de-

signed to reuse cached data for reducing the computational cost. Three new algorithms

were designed and implemented to tackle distance queries at three levels: primitives

(elementary shapes), sub-body (semi-convex) and body (non-convex). These were ex-

tensively tested for all principal descriptions of solids employed in computational me-

chanics, namely: quadrics, polytopes and non-uniform rational B-splines (NURBS).

The validation tests included an analytical calibration for contact problems, an analy-

sis of the theoretical costs for the space-partitioning algorithm and elementary contact

search tests. Finally, the algorithms were compared with existing methods for the so-

lution of contact mechanics and optimisation problems. This chapter summarises the

main findings and provides recommendations for future works.
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7.1 Summary and main findings

7.1.1 The Signed Volumes method

None of the existing algorithms for the solution of point–simplex distance queries is

robust and designed to exploit spatial coherence. The literature review has shown

that robustness has been repeatedly overlooked by the engineering community, and in

particular the impact that ill-conditioned problems have on the coupling of numerical

methods (such as DEM and FEM).

The Signed Volume method has been formulated after an in-depth analysis of the

effect of cancellation error. This provided insight on the mechanisms that led existing

algorithms to fail and enables the formulation of well-posed distance queries. The

result is a recursive procedure that handles naturally degenerate simplices and can be

tailored to exploit spatial coherence.

The key element which makes this algorithm extremely robust and accurate to

machine precision is the careful formulation of a well-posed problem. The sources of

numerical instabilities that could not be avoided have been placed where they cannot

compromise the final solution. This enhanced the robustness of the Signed Volumes

method.

7.1.2 Improving the GJK algorithm

The GJK algorithm could not be employed in engineering simulations because of its lack

of accuracy. Several authors pointed out that the the original distance sub-algorithm,

due to Johnson, is the main source of numerical instability. However, the studies

published to date did not provide sufficient information to address these instabilities.
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All attempts have focused on the termination conditions of the GJK algorithm rather

than the distance sub-algorithm.

A significant effort has been spent in Section 2.2 to shed light on the mechanisms

that lead the GJK algorithm to failure. It has been found that instabilities are not

caused by degenerate simplices, but rather by the volume form of the Voronoi region

supporting the point of minimum norm. This thesis has shown that the GJK algorithm

fails when the volume form of this region is null, however, degenerate simplices cannot

be avoided since thye are are somehow intrinsic to the GJK algorithm.

A solution to improve the GJK algorithm was found by replacing the original sub-

algorithm with the new Signed Volumes method. Its higher accuracy improved the

whole convergence of the GJK algorithm for both degenerate and well-conditioned

simplices. This translated into faster and more accurate distance queries between

arbitrary convex bodies, including polytopes, quadrics, NURBS or compounds of these.

Numerical tests demonstrated that this effectively is a more robust procedure. In

particular, when the objects are found in contact, the newly proposed sub-algorithm

runs from 15% to 30% faster than the original one.

7.1.3 Novel hierarchical search

In order to reduce the costs of the broad search for distance queries between non-convex

bodies, a new methodology was introduced in Section 3.3. Unlike other procedures,

only intrinsic quantities govern the broad search of this new method.

The procedure is designed for problems in which bodies have a complex shapes that

cannot be represented by simple polygons or quadrics. Basically, no assumption was

made on the shape of the bodies as these may displace, deform and change morphology.

196



Chapter 7. CONCLUSIONS

The only assumption made is that a large number of small binary trees may be

built and traversed more quickly than a unique tree. This hypothesis was then verified

by means fo a theoretical and numerical studies in Chapters 4 and 5.

7.1.4 Verification tests

A large number of verification tests were presented in Chapter 4. The tests have proven

that:

• Adaptive floating-point arithmetic can reduce the number of operations of the

Signed Volumes method and improve its accuracy.

• The routines implemented for the contact detection of FEM (tetrahedral and

hexahedral elements) and DEM simulations are robust.

• The contact resolution using the penalty formulation is robust and was calibrated

analytically for frictionless contact.

• The logic of the hierarchical search is sound.

• The separating distance can be safely approximated by the total displacement of

a body and this reduces by 95% the number of calls to the GJK algorithm.

• Contact is correctly detected even for large displacement problems involving slid-

ing over a body decomposed into sub-bodies.

• A gain in terms of CPU time is expected only if less than three bodies are

mutually in contact, for five or more an exponential loss is expected.

• The hypothesis formulated in Chapter 3 was validated.

• NURBS curves and surfaces may be treated by the new algorithms even at the

broad search phase.

Finally, an extensive comparison with published methods have been presented. For
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the first time the Voronoi search (64) and the Johnson’s algorithm (89) have been

compared. These were also compared with the Signed Volumes method which resulted

either faster or slightly slower than Johnson’s algorithm. Two versions (incremental

and non-incremental) of the GJK procedure were also tested with different distance

sub-algorithm. These have shown that the Signed Volumes method is indeed beneficial

for the convergence of the GJK procedure which ran 15%-20% faster.

7.1.5 Application to contact mechanics

The first application presented in this thesis aims to improve the modelling of granular

media. Chapter 5 has demonstrated the ability of the novel numerical tools to simulate

the mechanical packing of sand.

The reduction of CPU time obtained with the new hierarchical framework allows

to simulate grains with realistic shapes. Existing procedures would also be able to run

the same simulation, but the new algorithms dramatically reduce the computational

time for the detection of contact.

Three mesh refinements were tested to show that indeed the final assembly depends

on the mesh size. The coordination number and void ratio obtained with different

solvers were compared. Good agreement was found for samples of 100, 1200 and 2400

sand grains as in all these cases the CPU time saved was always above 50%.

Finally, the underlying hypothesis made in Chapter 3 about the number of bodies

mutually in contact was validated numerically. For the largest sample, about 80% of

the bodies collided with less than four other grains, thus justifying the reduction of

operations for the contact search.

Whilst this application involved only the combination of FEM and DEM, the new
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algorithms allow for the coupling of more numerical methods — such as meshless

methods or isogeometric analysis (IGA). For all of these, one could solve distance

queries between solid, shell, truss elements as well as rigid particles, spheres, ellipsoids

and NURBS.

7.1.6 Application to morphology optimisation

Chapter 6presented a case study in which the improved GJK algorithm is used to

advance the modelling of heterogeneous materials. This involved the generation of

representative volume elements (RVEs) for the multi-scale analysis of polycrystalline

materials. The generation process does not admit a closed-form solution and it there-

fore needs an optimisation process in which distance queries play a pivotal role.

The improved GJK algorithm was implemented in NEPER, a third-party software

package for the generation of RVEs. Two procedures were explored. The first one

aimed at adjusting the morphological properties of the RVE to reflect a given statistical

distribution, and the second one to match a particular experimental morphology. In

both cases the GJK algorithm is extensively used to drive the optimisation process.

Both generation processes were improved in terms of CPU time and quality. The

microstructures can now be generated 25% faster, and the regularisation step is now

performed more accurately.

7.2 Recommendations for further research

This section presents some of the future works which would build on top of what has

been developed and verified in this thesis. A trivial novelty would be to apply the
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novel algorithms to fields other than engineering and computer graphics, but there are

a number of (challenging) contributions from which these communities could benefit

extensively. Below are mentioned the three research directions the author values the

most.

7.2.1 Continuous contact detection in engineering

The concept of continuous contact detection has been developed for computer graph-

ics applications (199) to accelerate the contact search in dynamic simulations. This

method, however, is currently not available to engineers.

The idea is to search for collision between two time-steps by using information from

the past and (possibly estimated) from the future. This has been shown to speed up

the broad search phase and it suits all representations of solid bodies.

The way continuous contact detection is currently exploited makes use of the GJK

algorithm (36, 225), for which reason this thesis represents a step forward. However,

the high level of details and accuracy which characterise engineering simulations are

barriers not tackled by the computer graphics community. Making a coarse approx-

imation that enables to estimate collision and the subsequent time-step is probably

the biggest challenge to tackle before continuous contact detection can be applied in

engineering.

7.2.2 Extension to large NURBS models

This thesis has shown how the new algorithmic framework can solve distance queries

between NURBS curves, surfaces and solids, however, engineering simulations usually

involve larger bodies than the one considered here. These could bring new challenges to
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the solution of distance queries for methods requiring an initial guess, as in Chapter 4.

Furthermore, the fact that in this thesis NURBS were not approximated by tiles,

or other primitives, has been only used for contact detection purposes. From an engi-

neering point of view, one should make use of the accurate representation offered by

NURBS also for the resolution of contact constraints. That is, the phase following the

collision detection search.

An extension to the work presented in this thesis would therefore be the design

of contact resolution algorithms for isogeometric analysis (IGA) and similar NURBS-

based methods. Since the algorithms currently available in the literature do not pre-

serve the accurate representation offered by NURBS, but this thesis fills that gap,

future works can rely on the new algorithms to improve the fidelity of computational

contact mechanical models.

7.2.3 Heterogeneous computing on distributed-memory sys-

tems

Initially, the algorithms developed in this thesis were implemented from scratch, and

therefore on a serial code. Lately, they were made multi-thread safe and implemented

in a parallel code which, however, is limited to CPU and shared-memory architectures.

Future works should assess the performance of the new hierarchical framework on

distributed-memory systems and make use of processors units other than CPU. The

advances of programming frameworks for heterogeneous computing, such as openACC

and openCL, are enabling engineers to run simulations significantly faster. The new dis-

tance algorithms should therefore make the most out of the emerging general-purpose

computing on graphics processing units (GPGPU).
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assemblies. Géotechnique, 29(1):47–65.

[52] Dax, A. (2006). The distance between two convex sets. Linear Algebra and its
Applications, 416(1):184–213.

[53] de Berg, M., Cheong, O., van Kreveld, M., and Overmars, M. (2008). Computa-
tional Geometry. Springer, Berlin, Heidelberg.

[54] de Boor, C. (1972). On calculating with B-splines. Journal of Approximation
Theory, 6(1):50–62.

205



Bibliography

[55] De Cola, F., Falco, S., Barbieri, E., and Petrinic, N. (2015). New 3D geometrical
deposition methods for efficient packing of spheres based on tangency. International
Journal for Numerical Methods in Engineering, 104(12):1085–1114.
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[100] Hu, L., Hu, G., Fang, Z., and Zhang, Y. (2013). A new algorithm for contact
detection between spherical particle and triangulated mesh boundary in discrete
element method simulations. International Journal for Numerical Methods in Engi-
neering, 94(8):787–804.

[101] Hughes, T., Cottrell, J., and Bazilevs, Y. (2005). Isogeometric analysis: CAD,
finite elements, NURBS, exact geometry and mesh refinement. Computer Methods
in Applied Mechanics and Engineering, 194(39–41):4135–4195.

[102] Ilin, D. N. and Bernacki, M. (2016). Advancing layer algorithm of dense ellipse
packing for generating statistically equivalent polygonal structures. Granular Matter,
18(3):43.

[103] Jerves, A. X., Kawamoto, R. Y., and Andrade, J. E. (2016). Effects of grain mor-
phology on critical state: A computational analysis. Acta Geotechnica, 11(3):493–
503.

[104] Ji, H., Lien, F.-S., and Yee, E. (2008). A robust and efficient hybrid cut-
cell/ghost-cell method with adaptive mesh refinement for moving boundaries on
irregular domains. Computer Methods in Applied Mechanics and Engineering,
198(3):432–448.
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[230] Vlahinić, I., Kawamoto, R., Andò, E., Viggiani, G., and Andrade, J. E. (2017).
From computed tomography to mechanics of granular materials via level set bridge.
Acta Geotechnica, 12(1):85–95.
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